DUAL CURVATURE MEASURES FOR LOG-CONCAVE FUNCTIONS

被引:0
作者
Huang, Yong [1 ]
Liu, Jiaqian [1 ,2 ]
Xi, Dongmeng [3 ]
Zhao, Yiming [4 ]
机构
[1] Hunan Univ, Inst Math, 2 Lushan S Rd, Changsha 410082, Peoples R China
[2] Henan Univ, Sch Math & Stat, Kaifeng 475001, Peoples R China
[3] Shanghai Univ, Dept Math, 266 Jufengyuan Rd, Shanghai 200444, Peoples R China
[4] Syracuse Univ, Dept Math, 130 Sims Dr,215 Carnegie, Syracuse, NY 13244 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
BUSEMANN-PETTY PROBLEM; MINKOWSKI-FIREY THEORY; SUBSPACE CONCENTRATION; AFFINE; INEQUALITIES; INTERIOR; SOBOLEV;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce dual curvature measures for log-concave functions, which in the case of characteristic functions recover the dual curvature measures for convex bodies introduced by Huang-Lutwak-Yang-Zhang in 2016. Variational formulas are shown. The associated Minkowski problem for these dual curvature measures is considered and sufficient conditions in the symmetric setting are demonstrated.
引用
收藏
页码:815 / 860
页数:46
相关论文
共 50 条
  • [31] On subspace concentration for dual curvature measures
    Eller, Katharina
    Henk, Martin
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2023, 151
  • [32] Total Variation Distance Estimates via L2-Norm for Polynomials in Log-concave Random Vectors
    Kosov, Egor D.
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (21) : 16494 - 16510
  • [33] THE DUAL ORLICZ-RRUNN-MINKOWSKI INEQUALITY FOR CONCAVE FUNCTIONS
    Liu, Lijuan
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (02): : 487 - 506
  • [34] SUBSPACE CONCENTRATION OF DUAL CURVATURE MEASURES OF SYMMETRIC CONVEX BODIES
    Boroczky, Karoly J.
    Henk, Martin
    Pollehn, Hannes
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2018, 109 (03) : 411 - 429
  • [35] Ricci curvature and measures
    Bourguignon, Jean-Pierre
    [J]. JAPANESE JOURNAL OF MATHEMATICS, 2009, 4 (01): : 27 - 45
  • [36] The isomorphic Busemann-Petty problem for s-concave measures
    Wu, Denghui
    [J]. GEOMETRIAE DEDICATA, 2020, 204 (01) : 131 - 148
  • [37] Geometric Representation of Classes of Concave Functions and Duality
    Ivanov, Grigory
    Werner, Elisabeth M.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (08)
  • [38] Embeddings of concave functions and duals of Lorentz spaces
    Sinnamon, C
    [J]. PUBLICACIONS MATEMATIQUES, 2002, 46 (02) : 489 - 515
  • [39] On Exponentially Concave Functions and Their Impact in Information Theory
    Alirezaei, Gholamreza
    Mathar, Rudolf
    [J]. 2018 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA), 2018,
  • [40] Hypercontractivity for log-subharmonic functions
    Graczyk, Piotr
    Kemp, Todd
    Loeb, Jean-Jacques
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (06) : 1785 - 1805