DUAL CURVATURE MEASURES FOR LOG-CONCAVE FUNCTIONS

被引:0
|
作者
Huang, Yong [1 ]
Liu, Jiaqian [1 ,2 ]
Xi, Dongmeng [3 ]
Zhao, Yiming [4 ]
机构
[1] Hunan Univ, Inst Math, 2 Lushan S Rd, Changsha 410082, Peoples R China
[2] Henan Univ, Sch Math & Stat, Kaifeng 475001, Peoples R China
[3] Shanghai Univ, Dept Math, 266 Jufengyuan Rd, Shanghai 200444, Peoples R China
[4] Syracuse Univ, Dept Math, 130 Sims Dr,215 Carnegie, Syracuse, NY 13244 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
BUSEMANN-PETTY PROBLEM; MINKOWSKI-FIREY THEORY; SUBSPACE CONCENTRATION; AFFINE; INEQUALITIES; INTERIOR; SOBOLEV;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce dual curvature measures for log-concave functions, which in the case of characteristic functions recover the dual curvature measures for convex bodies introduced by Huang-Lutwak-Yang-Zhang in 2016. Variational formulas are shown. The associated Minkowski problem for these dual curvature measures is considered and sufficient conditions in the symmetric setting are demonstrated.
引用
收藏
页码:815 / 860
页数:46
相关论文
共 50 条
  • [21] Hadamard"s inequality for log-concave functions
    Fink, AM
    MATHEMATICAL AND COMPUTER MODELLING, 2000, 32 (5-6) : 625 - 629
  • [22] Covariance inequalities for convex and log-concave functions
    Bonnefont, Michel
    Hillion, Erwan
    Saumard, Adrien
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 : 627 - 660
  • [23] Zhang's Inequality for Log-Concave Functions
    Alonso-Gutierrez, David
    Bernues, Julio
    Gonzalez Merino, Bernardo
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR (GAFA) 2017-2019, VOL I, 2020, 2256 : 29 - 48
  • [24] Affine Invariant Maps for Log-Concave Functions
    Ben Li
    Carsten Schütt
    Elisabeth M. Werner
    The Journal of Geometric Analysis, 2022, 32
  • [25] Affine Invariant Maps for Log-Concave Functions
    Li, Ben
    Schuett, Carsten
    Werner, Elisabeth M.
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (04)
  • [26] Isoperimetry for spherically symmetric log-concave probability measures
    Huet, Nolwen
    REVISTA MATEMATICA IBEROAMERICANA, 2011, 27 (01) : 93 - 122
  • [27] A note on statistical distances for discrete log-concave measures
    Marsiglietti, Arnaud
    Pandey, Puja
    STATISTICS & PROBABILITY LETTERS, 2025, 216
  • [28] Isoperimetric and analytic inequalities for log-concave probability measures
    Bobkov, SG
    ANNALS OF PROBABILITY, 1999, 27 (04): : 1903 - 1921
  • [29] SMALL BALL PROBABILITY ESTIMATES FOR LOG-CONCAVE MEASURES
    Paouris, Grigoris
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (01) : 287 - 308
  • [30] Concentration in a thin Euclidean shell for log-concave measures
    Fleury, B.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (04) : 832 - 841