DUAL CURVATURE MEASURES FOR LOG-CONCAVE FUNCTIONS

被引:1
作者
Huang, Yong [1 ]
Liu, Jiaqian [1 ,2 ]
Xi, Dongmeng [3 ]
Zhao, Yiming [4 ]
机构
[1] Hunan Univ, Inst Math, 2 Lushan S Rd, Changsha 410082, Peoples R China
[2] Henan Univ, Sch Math & Stat, Kaifeng 475001, Peoples R China
[3] Shanghai Univ, Dept Math, 266 Jufengyuan Rd, Shanghai 200444, Peoples R China
[4] Syracuse Univ, Dept Math, 130 Sims Dr,215 Carnegie, Syracuse, NY 13244 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
BUSEMANN-PETTY PROBLEM; MINKOWSKI-FIREY THEORY; SUBSPACE CONCENTRATION; AFFINE; INEQUALITIES; INTERIOR; SOBOLEV;
D O I
10.4310/jdg/1727712894
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce dual curvature measures for log-concave functions, which in the case of characteristic functions recover the dual curvature measures for convex bodies introduced by Huang-Lutwak-Yang-Zhang in 2016. Variational formulas are shown. The associated Minkowski problem for these dual curvature measures is considered and sufficient conditions in the symmetric setting are demonstrated.
引用
收藏
页码:815 / 860
页数:46
相关论文
共 50 条
[21]   Divergence for s-concave and log concave functions [J].
Caglar, Umut ;
Werner, Elisabeth M. .
ADVANCES IN MATHEMATICS, 2014, 257 :219-247
[22]   On the Lp-Brunn-Minkowski and Dimensional Brunn-Minkowski Conjectures for Log-Concave Measures [J].
Hosle, Johannes ;
Kolesnikov, Alexander V. ;
Livshyts, Galyna V. .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (06) :5799-5836
[23]   GLOBAL RATES OF CONVERGENCE OF THE MLES OF LOG-CONCAVE AND s-CONCAVE DENSITIES [J].
Doss, Charles R. ;
Wellner, Jon A. .
ANNALS OF STATISTICS, 2016, 44 (03) :954-981
[24]   Complexity of zigzag sampling algorithm for strongly log-concave distributions [J].
Lu, Jianfeng ;
Wang, Lihan .
STATISTICS AND COMPUTING, 2022, 32 (03)
[25]   Rigidity and stability of Caffarelli's log-concave perturbation theorem [J].
De Philippis, Guido ;
Figalli, Alessio .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 154 :59-70
[26]   An upper bound on the variance of scalar multilayer perceptrons for log-concave distributions [J].
Sarraf, Aydin ;
Khalili, Saeed .
NEUROCOMPUTING, 2022, 488 :540-546
[27]   Renyi Entropy and Variance Comparison for Symmetric Log-Concave Random Variables [J].
Bialobrzeski, Maciej ;
Nayar, Piotr .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (06) :3431-3438
[28]   Bounding the Error of Discretized Langevin Algorithms for Non-Strongly Log-Concave Targets [J].
Dalalyan, Arnak S. ;
Karagulyan, Avetik ;
Riou-Durand, Lionel .
JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
[29]   Log-concave polynomials II: High-dimensional walks and an FPRAS for counting bases of a matroid [J].
Anari, Nima ;
Liu, Kuikui ;
Gharan, Shayan Oveis ;
Vinzant, Cynthia .
ANNALS OF MATHEMATICS, 2024, 199 (01) :259-299
[30]   Lp dual curvature measures [J].
Lutwak, Erwin ;
Yang, Deane ;
Zhang, Gaoyong .
ADVANCES IN MATHEMATICS, 2018, 329 :85-132