Translation-based completeness on compact intervals

被引:0
作者
Liehr, Lukas [1 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
关键词
Discrete translates; Completeness; Zalik-type results; SPACES;
D O I
10.1016/j.jat.2024.106104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a compact interval I subset of R, and a function f that is a product of a nonzero polynomial with a Gaussian, it will be shown that the translates { f (<middle dot> <middle dot> - lambda ) : lambda is an element of Lambda} are complete in C ( I ) if and only if the series of reciprocals of Lambda diverges. This extends a theorem in [R. A. Zalik, Trans. Amer. Math. Soc. 243, 299-308]. An additional characterization is obtained when Lambda is an arithmetic progression, and the generator f constitutes a linear combination of translates of a function with sufficiently fast decay. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:11
相关论文
共 27 条
  • [1] Cyclicity of bicyclic operators and completeness of translates
    Abakumov, Evgeny
    Atzmon, Aharon
    Grivaux, Sophie
    [J]. MATHEMATISCHE ANNALEN, 2008, 341 (02) : 293 - 322
  • [2] Akhiezer N. I., 1992, THEORY APPROXIMATION
  • [3] Alharbi W., 2023, Proc. Am. Math. Soc. Ser. B, V10, P353
  • [4] Completeness of integer translates in function spaces on R
    Atzmon, A
    Olevskii, A
    [J]. JOURNAL OF APPROXIMATION THEORY, 1996, 87 (03) : 291 - 327
  • [5] Bendory T., 2022, Notices Amer. Math. Soc., V69, P1487
  • [6] DENSE MARKOV SPACES AND UNBOUNDED BERNSTEIN INEQUALITIES
    BORWEIN, P
    ERDELYI, T
    [J]. JOURNAL OF APPROXIMATION THEORY, 1995, 81 (01) : 66 - 77
  • [7] Borwein P. B., 2012, Ser.: Graduate Texts in Mathematics, V161
  • [8] Bruna J, 2006, REV MAT IBEROAM, V22, P1
  • [9] Christ M., 2024, Math. Res. Lett.
  • [10] Injectivity of Gabor phase retrieval from lattice measurements
    Grohs, Philipp
    Liehr, Lukas
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2023, 62 : 173 - 193