Differentially Private Extreme Learning Machine

被引:0
作者
Ono, Hajime [1 ]
Tran Thi Phuong [1 ]
Le Trieu Phong [1 ]
机构
[1] Natl Inst Informat & Commun Technol NICT, 4-2-1 Nukui Kitamachi, Koganei, Tokyo 1848795, Japan
来源
MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, MDAI 2024 | 2024年 / 14986卷
关键词
Differential privacy; Extreme Learning Machine; Generalization performance; REGRESSION;
D O I
10.1007/978-3-031-68208-7_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel algorithm, the Differentially Private Extreme Learning Machine (DPELM), which guarantees pure differential privacy. The differential privacy budget is determined solely by one parameter of the ELM model: the number of hidden nodes. We demonstrate the effectiveness of DPELM by showcasing its reasonable utility, including its strong generalization performance, across benchmark datasets. Furthermore, DPELM offers a user-friendly experience, as it eliminates the need to consider data dimensionality, gradient norms, or objective function sensitivities.
引用
收藏
页码:165 / 176
页数:12
相关论文
共 14 条
[1]   Deep Learning with Differential Privacy [J].
Abadi, Martin ;
Chu, Andy ;
Goodfellow, Ian ;
McMahan, H. Brendan ;
Mironov, Ilya ;
Talwar, Kunal ;
Zhang, Li .
CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, :308-318
[2]  
Becker B., 1996, ADULT UCI MACHINE LE, DOI DOI 10.24432/C5XW20
[3]   Secure Multi-party Computation Based Privacy Preserving Extreme Learning Machine Algorithm Over Vertically Distributed Data [J].
Catak, Ferhat Ozgur .
NEURAL INFORMATION PROCESSING, PT II, 2015, 9490 :337-345
[4]  
Chaudhuri K, 2011, J MACH LEARN RES, V12, P1069
[5]   Calibrating noise to sensitivity in private data analysis [J].
Dwork, Cynthia ;
McSherry, Frank ;
Nissim, Kobbi ;
Smith, Adam .
THEORY OF CRYPTOGRAPHY, PROCEEDINGS, 2006, 3876 :265-284
[6]   Universal approximation using incremental constructive feedforward networks with random hidden nodes [J].
Huang, Guang-Bin ;
Chen, Lei ;
Siew, Chee-Kheong .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (04) :879-892
[7]   What are Extreme Learning Machines? Filling the Gap Between Frank Rosenblatt's Dream and John von Neumann's Puzzle [J].
Huang, Guang-Bin .
COGNITIVE COMPUTATION, 2015, 7 (03) :263-278
[8]   Extreme Learning Machine for Regression and Multiclass Classification [J].
Huang, Guang-Bin ;
Zhou, Hongming ;
Ding, Xiaojian ;
Zhang, Rui .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (02) :513-529
[9]  
Kuri S., 2017, 2017 IEEE S SERIES C, P1, DOI [10.1109/SSCI.2017.8285190, DOI 10.1109/SSCI.2017.8285190]
[10]   Optimizing extreme learning machines via ridge regression and batch intrinsic plasticity [J].
Neumann, Klaus ;
Steil, Jochen J. .
NEUROCOMPUTING, 2013, 102 :23-30