Programmable Curvature in Liquid Crystal Elastomers for Fabrication of 3D Electronics

被引:0
|
作者
Gibson, Jared A. [1 ]
George, Sasha M. [2 ]
Ambulo, Cedric P. [3 ]
Sivaperuman Kalairaj, Manivannan [1 ]
Dana, Asaf [1 ,2 ]
Tseng, Yeh-Chia [1 ]
Auguste, Anesia D. [4 ]
Lemieux, Melbs [3 ]
Mcconney, Michael E. [4 ]
Ware, Taylor H. [1 ,2 ]
机构
[1] Texas A&M Univ, Dept Biomed Engn, College Stn, TX 77840 USA
[2] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77840 USA
[3] Electroninks Inc, Austin, TX 78744 USA
[4] Air Force Res Lab, Dayton, OH 05433 USA
关键词
liquid crystal elastomers; stimuli-responsive; polymers; curvature; 3D electronics; actuator; dielectric;
D O I
10.1021/acsaelm.4c02177
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Curved electronics hold immense promise for applications ranging from flexible displays to biomedical devices. Transitioning from conventional planar fabrication to three-dimensional (3D) geometries remains a significant challenge. To manufacture 3D electronics, either the patterning process must be adapted to 3D forms, or planar substrates must be deformed into 3D shapes. Liquid crystal elastomers (LCEs) offer a promising platform by enabling intrinsic shape change from flat to intricate 3D forms through controlled molecular alignment. By patterning LCE surfaces with conductive traces prior to deformation, curved electronics can be fabricated using established planar deposition methods. Cross-linking LCEs with programmed molecular alignment at elevated temperatures allows for the fabrication of films that can adopt tunable normal and Gaussian curvature near room temperature. Increasing the nematic-isotropic transition temperature (T NI) of the LCE allows for a wide range of cross-linking temperatures, which in turn allows for the magnitude of the deformation to be controlled. Here, we present a tunable LCE composition with a T NI up to 162 +/- 2 degrees C. Moreover, we fabricate hemispherical films with radii of curvature ranging from 24.57 +/- 2.46 to 41.31 +/- 2.82 mm at room temperature. Additionally, the effect of metallization on the deformation of LCEs into 3D forms is characterized. We envision applications for this 3D electronic fabrication platform for wearable devices in health monitoring systems designed to integrate with curvilinear human anatomy.
引用
收藏
页码:2373 / 2383
页数:11
相关论文
共 50 条
  • [1] Programmable Shape Change in Semicrystalline Liquid Crystal Elastomers
    Javed, Mahjabeen
    Corazao, Tyler
    Saed, Mohand O.
    Ambulo, Cedric P.
    Li, Yuzhan
    Kessler, Michael R.
    Ware, Taylor H.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (30) : 35087 - 35096
  • [2] Shape memory behaviors of 3D printed liquid crystal elastomers
    Dai, Lu
    Wang, Liqian
    Chen, Baihong
    Xu, Zengting
    Wang, Zhijian
    Xiao, Rui
    SOFT SCIENCE, 2023, 3 (01):
  • [3] Physical Models from Physical Templates Using Biocompatible Liquid Crystal Elastomers as Morphologically Programmable Inks For 3D Printing
    Prevot, Marianne E.
    Ustunel, Senay
    Freychet, Guillaume
    Webb, Caitlyn R.
    Zhernenkov, Mikhail
    Pindak, Ron
    Clements, Robert J.
    Hegmann, Elda
    MACROMOLECULAR BIOSCIENCE, 2023, 23 (03)
  • [4] Responsive, 3D Electronics Enabled by Liquid Crystal Elastomer Substrates
    Kim, Hyun
    Gibson, John
    Maeng, Jimin
    Saed, Mohand O.
    Pimentel, Krystine
    Rihani, Rashed T.
    Pancrazio, Joseph J.
    Georgakopoulos, Stavros, V
    Ware, Taylor H.
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (21) : 19506 - 19513
  • [5] Biocatalytic 3D Actuation in Liquid Crystal Elastomers via Enzyme Patterning
    Abadia, Albert Velasco
    Herbert, Katie M.
    White, Timothy J.
    Schwartz, Daniel K.
    Kaar, Joel L.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (23) : 26480 - 26488
  • [6] Tunable photonic devices by 3D laser printing of liquid crystal elastomers
    Woska, Simon
    Muenchinger, Alexander
    Beutel, Dominik
    Blasco, Eva
    Hessenauer, Jannis
    Karayel, Osman
    Rietz, Pascal
    Pfleging, Stefan
    Oberle, Roman
    Rockstuhl, Carsten
    Wegener, Martin
    Kalt, Heinz
    OPTICAL MATERIALS EXPRESS, 2020, 10 (11) : 2920 - 2935
  • [7] A Molecular Rheology Dynamics Study on 3D Printing of Liquid Crystal Elastomers
    Ustunel, Senay
    Pandya, Harsh
    Prevot, Marianne E.
    Pegorin, Gisele
    Shiralipour, Faeze
    Paul, Rajib
    Clements, Robert J.
    Khabaz, Fardin
    Hegmann, Elda
    MACROMOLECULAR RAPID COMMUNICATIONS, 2024, 45 (11)
  • [8] 3D printing of biomimetic liquid crystal elastomers with enhanced energy absorption capacities
    Zhao, Yao
    Li, Jianyang
    Ren, Lei
    Liu, Qingping
    Ren, Luquan
    Wang, Kunyang
    Li, Bingqian
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 5683 - 5691
  • [9] Reactive 3D Printing of Shape-Programmable Liquid Crystal Elastomer Actuators
    Barnes, Morgan
    Sajadi, Seyed M.
    Parekh, Shaan
    Rahman, Muhammad M.
    Ajayan, Pulickel M.
    Verduzco, Rafael
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (25) : 28692 - 28699
  • [10] Programmable bio-ionic liquid functionalized hydrogels for in situ 3D bioprinting of electronics at the tissue interface
    Krishnadoss, Vaishali
    Kanjilal, Baishali
    Masoumi, Arameh
    Banerjee, Aihik
    Dehzangi, Iman
    Pezhouman, Arash
    Ardehali, Reza
    Martins-Green, Manuela
    Leijten, Jeroen
    Noshadi, Iman
    MATERIALS TODAY ADVANCES, 2023, 17