Device-independent verification of controlled non-local CNOT quantum gate

被引:0
|
作者
Li, YiNing [1 ]
Gong, NengFei [1 ]
Tian, YueHan [1 ]
Wang, TieJun [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
关键词
distributed quantum computing; controlled non-local quantum gate; device-independent verification; TELEPORTATION; COMPUTATION;
D O I
10.1360/SSPMA-2024-0575
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Controlled non-local quantum gate operations reveal the cooperative and supervisory relationships of the controller and the non-local gate operators in a quantum networks, which is an essential feature for building multi-party quantum computing networks, and their security relies on quantum entanglement resources. To understand the behavior of vendors who substitute quantum entanglement resources with classical-quantum hybrid resources, this paper proposes a device-independent verification scheme for controlled non-local CNOT quantum gates. Moreover, it formulates a Svetlichny-type inequality to conduct an effective verification of the utilization of entanglement resources in nonlocal gate operations, particularly in instances where the Svetlichny inequality is not applicable. Our scheme offers a theoretical foundation for constructing secure distributed quantum computing networks in the future.
引用
收藏
页数:11
相关论文
共 66 条
  • [1] From Bell's theorem to secure quantum key distribution
    Acin, Antonio
    Gisin, Nicolas
    Masanes, Lluis
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (12)
  • [2] Quantum advantage and noise reduction in distributed quantum computing
    Avron, J.
    Casper, Ofer
    Rozen, Ilan
    [J]. PHYSICAL REVIEW A, 2021, 104 (05)
  • [3] Demonstration of Controlled Quantum Teleportation for Discrete Variables on Linear Optical Devices
    Barasinski, Artur
    Cernoch, Antonin
    Lemr, Karel
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (17)
  • [4] Bell J S., 1964, Physics, V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, 10.1103/PhysicsPhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195]
  • [5] TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS
    BENNETT, CH
    BRASSARD, G
    CREPEAU, C
    JOZSA, R
    PERES, A
    WOOTTERS, WK
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (13) : 1895 - 1899
  • [6] Bloch vectors for qudits
    Bertlmann, Reinhold A.
    Krammer, Philipp
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (23)
  • [7] Bravyi S, 2024, NATURE, V627, DOI 10.1038/s41586-024-07107-7
  • [8] Quantum Low-Density Parity-Check Codes
    Breuckmann, Nikolas P.
    Eberhardt, Jens Niklas
    [J]. PRX QUANTUM, 2021, 2 (04):
  • [9] Bell nonlocality
    Brunner, Nicolas
    Cavalcanti, Daniel
    Pironio, Stefano
    Scarani, Valerio
    Wehner, Stephanie
    [J]. REVIEWS OF MODERN PHYSICS, 2014, 86 (02) : 419 - 478
  • [10] Quantum Internet: Networking Challenges in Distributed Quantum Computing
    Cacciapuoti, Angela Sara
    Caleffi, Marcello
    Tafuri, Francesco
    Cataliotti, Francesco Saverio
    Gherardini, Stefano
    Bianchi, Giuseppe
    [J]. IEEE NETWORK, 2020, 34 (01): : 137 - 143