A Reduced Order Model for Sea Water Intrusion Simulation Using Proper Orthogonal Decomposition

被引:0
|
作者
Geranmehr, Mohammadali [1 ]
Bau, Domenico [1 ]
Mayer, Alex S. [2 ]
Yu, Weijiang [1 ]
机构
[1] Univ Sheffield, Dept Civil & Struct Engn, Sheffield S1 3JD, England
[2] Univ Texas El Paso, El Paso, TX USA
基金
英国工程与自然科学研究理事会;
关键词
COASTAL AQUIFERS; SEAWATER INTRUSION; GROUNDWATER LEVEL; SURROGATE MODELS; UNCERTAINTY PROPAGATION; PUMPING OPTIMIZATION; SOLUTE TRANSPORT; REDUCTION; POD; PREDICTION;
D O I
10.1111/gwat.13462
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Sea water intrusion (SWI) simulators are essential tools to assist the sustainable management of coastal aquifers. These simulators require the solution of coupled variable-density partial differential equations (PDEs), which reproduce the processes of groundwater flow and dissolved salt transport. The solution of these PDEs is typically addressed numerically with the use of density-dependent flow simulators, which are computationally intensive in most practical applications. To this end, model surrogates are generally developed as substitutes for full-scale aquifer models to trade off accuracy in exchange for computational efficiency. Surrogates represent an attractive option to support groundwater management situations in which fast simulators are required to evaluate large sets of alternative pumping strategies. Reduced-order models, a sub-category of surrogate models, are based on the original model equations and may provide quite accurate results at a small fraction of computational cost. In this study, a variable-density flow reduced-order model based on proper orthogonal decomposition (POD) and utilizing a fully coupled flow and solute-transport model is implemented with a finite-difference (FD) approach for simulating SWI in coastal aquifers. The accuracy and computational efficiency of the FD-POD approach for both homogeneous and-more realistic-heterogeneous systems are investigated using test cases based on the classic Henry's problem (Henry 1964). The findings demonstrate that the combined FD-POD approach is effective in terms of both accuracy and computational gain and can accommodate the output of the most popular variable-density flow models, such as those from USGS's MODFLOW family.
引用
收藏
页码:205 / 219
页数:15
相关论文
共 50 条
  • [1] Reduced order ocean model using proper orthogonal decomposition
    Salas-de-Leon, D. A.
    Monreal-Gomez, M. A.
    van-de-Ven, E.
    Weiland, S.
    Salas-Monreal, D.
    REVISTA MEXICANA DE FISICA, 2009, 55 (03) : 185 - 191
  • [2] Proper Orthogonal Decomposition Reduced-Order Model for Nonlinear Aeroelastic Oscillations
    Xie, Dan
    Xu, Min
    Dowell, Earl H.
    AIAA JOURNAL, 2014, 52 (02) : 229 - 241
  • [3] Reduced-order optimal control of water flooding using proper orthogonal decomposition
    van Doren, Jorn F. M.
    Markovinovic, Renato
    Jansen, Jan-Dirk
    COMPUTATIONAL GEOSCIENCES, 2006, 10 (01) : 137 - 158
  • [4] Reduced-order optimal control of water flooding using proper orthogonal decomposition
    Jorn F. M. van Doren
    Renato Markovinović
    Jan-Dirk Jansen
    Computational Geosciences, 2006, 10 : 137 - 158
  • [5] Proper orthogonal decomposition reduced-order model of the global oceans
    Kitsios, Vassili
    Cordier, Laurent
    O'Kane, Terence J.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2024, 38 (05) : 707 - 727
  • [6] An efficient proper orthogonal decomposition based reduced-order model for compressible flows
    Krath, Elizabeth H.
    Carpenter, Forrest L.
    Cizmas, Paul G. A.
    Johnston, David A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 426 (426)
  • [7] Open-loop control of cavity noise using Proper Orthogonal Decomposition reduced-order model
    Nagarajan, Kaushik Kumar
    Singha, Sintu
    Cordier, Laurent
    Airiau, Christophe
    COMPUTERS & FLUIDS, 2018, 160 : 1 - 13
  • [8] Spectral Proper Orthogonal Decomposition Reduced-Order Model for Analysis of Aerothermoelasticity
    Ji, Chunxiu
    Xie, Dan
    Zhang, Shihao
    Maqsood, Adnan
    AIAA JOURNAL, 2023, 61 (02) : 793 - 807
  • [9] Reduced-order modeling of the upper tropical Pacific Ocean model using proper orthogonal decomposition
    Cao, Yanhua
    Zhu, Jiang
    Luo, Zhendong
    Navon, I. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (8-9) : 1373 - 1386
  • [10] A reduced-order model for heat transfer in multiphase flow and practical aspects of the proper orthogonal decomposition
    Brenner, Thomas A.
    Fontenot, Raymond L.
    Cizmas, Paul G. A.
    O'Brien, Thomas J.
    Breault, Ronald W.
    COMPUTERS & CHEMICAL ENGINEERING, 2012, 43 : 68 - 80