High-Performance Planar Thin-Film Thermoelectric Cooler Based on Sputtered Nanocrystalline Bi2Te3/Bi0.5Sb1.5Te3 Thin Films for On-Chip Cooling

被引:0
|
作者
Gong, Tingrui [1 ,2 ]
Ma, Chuangwei [1 ,2 ]
Li, Lianghui [1 ,2 ]
Gao, Lei [1 ,2 ]
Cao, Linwei [1 ,2 ]
Shi, Maolin [1 ,2 ]
Li, Juntao [1 ,2 ]
Su, Wei [2 ]
机构
[1] China Acad Engn Phys, Microsyst & Terahertz Res Ctr, Chengdu 610200, Sichuan, Peoples R China
[2] China Acad Engn Phys, Inst Elect Engn, Mianyang 621999, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
thin-film thermoelectric cooler; radial planar structure; magnetron sputtering; hotspot cooling; fabrication; OPTIMIZATION; MICROREFRIGERATORS; BI0.5SB1.5TE3; FABRICATION; DEVICES;
D O I
10.1021/acsami.4c19653
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The development of high-performance thin-film thermoelectric coolers (TFTECs) that are compatible with standard integrated circuit processes and can reduce power consumption is critical to achieving large-scale applications. In this work, we fabricate a planar TFTEC based on nanocrystalline p-type Bi0.5Sb1.5Te3 and n-type Bi2Te3 thin films using magnetron sputtering, standard lithography, and postannealing processes. The power factors of the Bi0.5Sb1.5Te3 and Bi2Te3 thin films reach 3.63 and 4.28 mW/mK2, respectively, and the ZT values reach 0.82 and 0.93, which are comparable to those of bulk TE materials. The radial configuration of the device allows the cold-side thermal resistance to be increased and the hot-side thermal resistance to be decreased, thereby facilitating a substantial cooling temperature difference. Furthermore, the large in-plane contact area helps to reduce device resistance and power consumption. At a heating stage temperature of 360 K and a power consumption of 4.76 mW, the net cooling temperature difference of the TFTEC reaches 4 degrees C. The maximum temperature difference between the hot end and the cold end is 7.26 degrees C, while the cold end temperature remains below the ambient temperature. The high-performance planar TFTECs demonstrated in this work exhibit both a high net cooling performance and competitive fabrication cost, rendering them ideal for on-chip hotspot cooling.
引用
收藏
页码:17008 / 17017
页数:10
相关论文
共 50 条
  • [21] Enhancement of thermoelectric performance of Bi0.5Sb1.5Te3 alloy by inclusion of LaVO3 Mott insulator
    Huynh Thanh-Nam
    Babu, Madavali
    Nersisyan, Hayk H.
    Hong, Soon-Jik
    Jin-Kyu, Lee
    Ki-Buem, Kim
    Gian, Song
    Jong-Hyeon, Lee
    CHEMICAL ENGINEERING JOURNAL, 2022, 437
  • [22] Nanoindentation pop-in effects of Bi2Te3 thermoelectric thin films
    Jian, Sheng-Rui
    Tasi, Cheng-Hsun
    Huang, Shiau-Yuan
    Luo, Chih-Wei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 622 : 601 - 605
  • [23] Enhancement in thermoelectric power factor of polycrystalline Bi0.5Sb1.5Te3 by crystallite alignment
    Dehkordi, Arash Mehdizadeh
    Vashaee, Daryoosh
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2012, 209 (11): : 2131 - 2134
  • [24] A comprehensive investigation into thermoelectric properties of PEDOT:PSS/Bi0.5Sb1.5Te3 composites
    Masoumi, Saeed
    Zhussupbekov, Kuanysh
    Prochukhan, Nadezda
    Morris, Michael A.
    Pakdel, Amir
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (36) : 14314 - 14329
  • [25] Electrochemical Formation of p-Type Bi0.5Sb1.5Te3 Thick Films onto Nickel
    Lei, C.
    Burton, M.
    Nandhakumar, Iris S.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) : D192 - D195
  • [26] Thermoelectric response of textured Sb2Te3-BiSb and Sb2Te3-Bi2Te3 thin film junctions
    Nepal, Rajeev
    Bajracharya, Prabesh
    Kumar, Ravinder
    Kolagani, Rajeswari
    Budhani, Ramesh C.
    APPLIED PHYSICS LETTERS, 2024, 124 (14)
  • [27] Ge2Sb1.5Bi0.5Te5 thin film as inorganic photoresist
    Xi, Hongzhu
    Liu, Qian
    Tian, Ye
    Wang, Yongsheng
    Guo, Shengming
    Chu, Maoyou
    OPTICAL MATERIALS EXPRESS, 2012, 2 (04): : 461 - 468
  • [28] Bi2Te3 Thin Films Deposited by the Combination of Bi and Te Plasmas in a PLD Process
    Reyes-Verdugo, Laura A.
    Gutierrez-Lazos, C. D.
    Santos-Cruz, J.
    Chavez-Chavez, A.
    Quinones-Galvan, J. G.
    MICROMACHINES, 2023, 14 (03)
  • [29] Integration of CuO Thin Film and Bi2Te3 for Enhancing the Thermoelectric Conversion Efficiency of Thermoelectric Generator
    Chang, Ho
    Cho, Kung-Ching
    Yu, Chih-Jung
    Huang, Kuohsiu-David
    Chen, Chieh-Chen
    NEW MATERIALS AND ADVANCED MATERIALS, PTS 1 AND 2, 2011, 152-153 : 768 - +
  • [30] Spark erosion: a high production rate method for producing Bi0.5Sb1.5Te3 nanoparticles with enhanced thermoelectric performance
    Nguyen, P. K.
    Lee, K. H.
    Moon, J.
    Kim, S. I.
    Ahn, K. A.
    Chen, L. H.
    Lee, S. M.
    Chen, R. K.
    Jin, S.
    Berkowitz, A. E.
    NANOTECHNOLOGY, 2012, 23 (41)