Using UAV hyperspectral imagery and deep learning for Object-Based quantitative inversion of Zanthoxylum rust disease index

被引:3
作者
Zhang, Kai [1 ,2 ]
Deng, Jie [2 ]
Zhou, Congying [2 ]
Liu, Jiangui [3 ]
Lv, Xuan [2 ]
Wang, Ying [1 ]
Sun, Enhong [1 ]
Liu, Yan [1 ]
Ma, Zhanhong [2 ]
Shang, Jiali [3 ]
机构
[1] Jiangjin Modern Agrometeorol Expt Stn Chongqing Ch, Jiangjin Meteorol Adm, Jiangjin 402260, Peoples R China
[2] China Agr Univ, Coll Plant Protect, Dept Plant Pathol, MARA Key Lab Pest Monitoring & Green Management, Beijing 100193, Peoples R China
[3] Agr & Agri Food Canada, Ottawa Res & Dev Ctr, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
基金
国家重点研发计划; 中国博士后科学基金;
关键词
UAV; Hyperspectral; Deep Learning; Quantitative Inversion; Zanthoxylum Rust; Disease index; BUNGEANUM;
D O I
10.1016/j.jag.2024.104262
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Zanthoxylum rust (ZR) poses a significant threat to Zanthoxylum bungeanum Maxim.(ZBM) production, impacting both the yield and quality. The lack of current research on ZR using unmanned aerial vehicle (UAV) remote sensing poses a challenge to achieving precise management of individual ZBM plant. This study acquired six UAV hyperspectral images to create a ZR inversion dataset . This dataset, to our knowledge, is the first dataset for remote sensing deep learning (DL) of ZR using UAV. To facilitate automated extraction of individual ZBM plant and the quantitative inversion of ZR disease index (DI), we introduced the object-based quantitative inversion framework (OQIF). OQIF achieved high accuracy in recognizing ZBM (average precision at an intersection over union threshold of 0.5 was 90.0 %). Remarkably, OQIF demonstrates outstanding quantitative inversion results for ZR DI (R-2 = 0.90, RMSE = 3.97, n = 8166). For DI < 10, the RMSE was 2.48, showcasing early detection capability. Our research has significant implications for ZBM cultivation and precision management, pioneering object-based quantitative inversion for tree diseases and yield estimation, with potential for early ZR detection.
引用
收藏
页数:16
相关论文
共 35 条
[1]   UAV-Based Remote Sensing Technique to Detect Citrus Canker Disease Utilizing Hyperspectral Imaging and Machine Learning [J].
Abdulridha, Jaafar ;
Batuman, Ozgur ;
Ampatzidis, Yiannis .
REMOTE SENSING, 2019, 11 (11)
[2]   BS-Nets: An End-to-End Framework for Band Selection of Hyperspectral Image [J].
Cai, Yaoming ;
Liu, Xiaobo ;
Cai, Zhihua .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (03) :1969-1984
[3]   RustQNet: Multimodal deep learning for quantitative inversion of wheat stripe rust disease index [J].
Deng, Jie ;
Hong, Danfeng ;
Li, Chenyu ;
Yao, Jing ;
Yang, Ziqian ;
Zhang, Zhijian ;
Chanussot, Jocelyn .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 225
[4]   Pixel-level regression for UAV hyperspectral images: Deep learning-based quantitative inverse of wheat stripe rust disease index [J].
Deng, Jie ;
Zhang, Xunhe ;
Yang, Ziqian ;
Zhou, Congying ;
Wang, Rui ;
Zhang, Kai ;
Lv, Xuan ;
Yang, Lujia ;
Wang, Zhifang ;
Li, Pengju ;
Ma, Zhanhong .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 215
[5]   Quantitative Estimation of Wheat Stripe Rust Disease Index Using Unmanned Aerial Vehicle Hyperspectral Imagery and Innovative Vegetation Indices [J].
Deng, Jie ;
Wang, Rui ;
Yang, Lujia ;
Lv, Xuan ;
Yang, Ziqian ;
Zhang, Kai ;
Zhou, Congying ;
Li, Pengju ;
Wang, Zhifang ;
Abdullah, Ahsan ;
Ma, Zhanhong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[6]   Applying convolutional neural networks for detecting wheat stripe rust transmission centers under complex field conditions using RGB-based high spatial resolution images from UAVs [J].
Deng, Jie ;
Zhou, Huiru ;
Lv, Xuan ;
Yang, Lujia ;
Shang, Jiali ;
Sun, Qiuyu ;
Zheng, Xin ;
Zhou, Congying ;
Zhao, Baoqiang ;
Wu, Jiachong ;
Ma, Zhanhong .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 200
[7]   Detection and Location of Dead Trees with Pine Wilt Disease Based on Deep Learning and UAV Remote Sensing [J].
Deng, Xiaoling ;
Tong, Zejing ;
Lan, Yubin ;
Huang, Zixiao .
AGRIENGINEERING, 2020, 2 (02) :294-307
[8]   Deep Learning in Forestry Using UAV-Acquired RGB Data: A Practical Review [J].
Diez, Yago ;
Kentsch, Sarah ;
Fukuda, Motohisa ;
Caceres, Maximo Larry Lopez ;
Moritake, Koma ;
Cabezas, Mariano .
REMOTE SENSING, 2021, 13 (14)
[9]   Learning Disentangled Priors for Hyperspectral Anomaly Detection: A Coupling Model-Driven and Data-Driven Paradigm [J].
Li, Chenyu ;
Zhang, Bing ;
Hong, Danfeng ;
Jia, Xiuping ;
Plaza, Antonio ;
Chanussot, Jocelyn .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (04) :6883-6896
[10]   CasFormer: Cascaded transformers for fusion-aware computational hyperspectral imaging [J].
Li, Chenyu ;
Zhang, Bing ;
Hong, Danfeng ;
Zhou, Jun ;
Vivone, Gemine ;
Li, Shutao ;
Chanussot, Jocelyn .
INFORMATION FUSION, 2024, 108