Multiple Types of Defect Passivation Using a Pyridine Derivative Modifier for Efficient and Stable Perovskite Solar Cells

被引:1
作者
Sun, Huina [1 ,2 ,3 ]
Gao, Jie [1 ,2 ,3 ]
Xu, Yibo [1 ,2 ,3 ,4 ]
Li, Yue [1 ,2 ,3 ]
Zhou, Chenguang [1 ,2 ,3 ]
Du, Kaihuai [4 ]
Dong, Xu [4 ]
Fang, Zhimin [4 ]
Zhang, Luozheng [4 ]
Li, Lvzhou [4 ]
Yuan, Ningyi [1 ,2 ,3 ]
Ding, Jianning [1 ,2 ,3 ]
机构
[1] Sch Mat Sci & Engn, Changzhou 213164, Peoples R China
[2] Jiangsu Collaborat Innovat Ctr Photovolta Sci & En, Changzhou 213164, Peoples R China
[3] Changzhou Univ, Jiangsu Prov Cultivat Base State Key Lab Photovolt, Changzhou 213164, Peoples R China
[4] Yangzhou Univ, Inst Technol Carbon Neutralizat, Yangzhou 225127, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2025年 / 8卷 / 02期
关键词
perovskite solar cells; defect passivation; charge transfer; hydrogenbonds; stability; PERFORMANCE; STABILITY; LENGTHS; CATION; LEAD;
D O I
10.1021/acsaem.4c02618
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The defect formation energy of perovskites is low, and ions can easily migrate and evaporate during annealing and usage. Here, we introduce 5-aminopyridine-2-carboxylic acid (5-APA) for modifying the perovskite layer to enhance the device efficiency and stability. The pyridine N and carbonyl (C=O) can form strong anchoring effects with uncoordinated Pb2+, effectively suppressing nonradiative recombination. Simultaneously, the amino group (-NH2) forms hydrogen bonds with the organic cations in the perovskite film and can bind with VMA and VFA vacancies, thereby significantly enhancing the stability of the device. After surface modification, the crystallinity of the perovskite film was significantly improved, and the energy level alignment with C60 is optimized. Specifically, the V OC of the modified device increases from 1.09 to 1.17 V, and the PCE reaches 24.19%. After aging for 1000 h at 85 degrees C in a nitrogen atmosphere, the stability of the modified device remains at 81%, while the unmodified device retains only 51%. Additionally, sunlight aging in the air was simulated for 30 days. The stability of the modified device is 82%, compared to only 52% for the unmodified device. Our findings fully demonstrate the significant effect of multifunctional pyridine derivative surface modification in enhancing the efficiency and stability of perovskite solar cells.
引用
收藏
页码:1069 / 1077
页数:9
相关论文
共 50 条
  • [41] Critical Role of Functional Groups in Defect Passivation and Energy Band Modulation in Efficient and Stable Inverted Perovskite Solar Cells Exceeding 21% Efficiency
    Zheng, Jiawei
    Chen, Jiangzhao
    Ouyang, Dan
    Huang, Zhanfeng
    He, Xinjun
    Kim, Jinwook
    Choy, Wallace C. H.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (51) : 57165 - 57173
  • [42] Efficient Passivation with Lead Pyridine-2-Carboxylic for High-Performance and Stable Perovskite Solar Cells
    Fu, Sheng
    Li, Xiaodong
    Wan, Li
    Wu, Yulei
    Zhang, Wenxiao
    Wang, Yueming
    Bao, Qinye
    Fang, Junfeng
    [J]. ADVANCED ENERGY MATERIALS, 2019, 9 (35)
  • [43] Defect-Passivation Using Organic Dyes for Enhanced Efficiency and Stability of Perovskite Solar Cells
    Xiong, Shaobing
    Song, Jingnan
    Yang, Jianming
    Xu, Jinqiu
    Zhang, Ming
    Ma, Ruru
    Li, Danqin
    Liu, Xianjie
    Liu, Feng
    Duan, Chungang
    Fahlman, Mats
    Bao, Qinye
    [J]. SOLAR RRL, 2020, 4 (05)
  • [44] Interfacial Energy Level Alignment and Defect Passivation by Using a Multifunctional Molecular for Efficient and Stable Perovskite Solar Cells
    Ye, Yong-Chun
    Chen, Li
    Chen, Xian-Min
    Ma, Chun-Ying
    Lv, Bing-Hao
    Wang, Jiang-Ying
    Dou, Wei-Dong
    Zhang, Chu
    Ma, Ting-Li
    Tang, Jian-Xin
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (08)
  • [45] Surface passivation of perovskite thin films by phosphonium halides for efficient and stable solar cells
    He, Qingquan
    Worku, Michael
    Xu, Liangjin
    Zhou, Chenkun
    Lteif, Sandrine
    Schlenoff, Joseph B.
    Ma, Biwu
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (04) : 2039 - 2046
  • [46] Grain Boundary Passivation Using D131 Organic Dye Molecule for Efficient and Thermally Stable Perovskite Solar Cells
    Zhu, Jingwei
    Liu, Zhuoyan
    Hu, Ping
    Guo, Minghuang
    Li, Yafeng
    Li, Junming
    Akram, Muhammad Aftab
    Wei, Mingdeng
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, : 13825 - 13834
  • [47] Dual Functions of Defect Passivation and Hole Transport Dopant Enabled by Piperidyl Ionic Liquid for Stable and Efficient Perovskite Solar Cells
    Zhang, Zhen
    Si, Shenglin
    Luo, Wenqiang
    Liang, Yunqi
    Xian, Zihao
    Wen, Haoxin
    Huang, Xinxing
    Yin, Tianzhou
    Guo, Yixuan
    Wu, Hualin
    Xu, Yong
    Huang, Shaoming
    [J]. SOLAR RRL, 2023, 7 (11)
  • [48] Defects and Defect Passivation in Perovskite Solar Cells
    Wang, Zhanwei
    Gao, Hongli
    Wu, Dandan
    Meng, Junhua
    Deng, Jinxiang
    Cui, Min
    [J]. MOLECULES, 2024, 29 (09):
  • [49] Defect passivation with bromine template for efficient perovskite solar cells
    Du, Zhuowei
    Ma, Zhu
    Liu, Qianyu
    Huang, Zhangfeng
    Yu, Tangjie
    Li, Yanlin
    Hou, Shanyue
    Chen, Yi
    Yang, Qiang
    You, Wei
    Yang, Junbo
    Li, Guoming
    Xu, Jingjing
    Du, Hao
    Li, Yixian
    Liu, Zichen
    Huang, Yuelong
    Yu, Jian
    Sun, Kuan
    Mai, Yaohua
    Su, Rong
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 173
  • [50] Synchronous defect passivation strategy via Lewis base for efficient and stable perovskite solar cells
    Liu, Hongtao
    Miao, Xinyue
    Wang, Kelin
    Gao, Jieyu
    Geng, Hailong
    Deng, Xiong
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (34) : 26040 - 26049