THE NORDHAUS-GADDUM-TYPE INEQUALITIES FOR THE NIRMALA INDICES

被引:0
|
作者
Kumar, Virendra [1 ]
Das, Shibsankar [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Math, Varanasi 221005, Uttar Pradesh, India
来源
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS | 2025年 / 15卷 / 01期
关键词
Degree-based topological indices; Nirmala index; First inverse Nirmala index; Second inverse Nirmala index; Nordhaus-Gaddum-type inequalities;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nowadays, deducing the bounds and relations between known topological indices is an interesting tool in Chemical Graph Theory (CGT). This article investigates the mathematical properties of the recently defined Nirmala indices in terms of some graph invariants. At the outset, we establish some mathematical relations between the Nirmala indices (Nirmala index, first and second inverse Nirmala indices) and other well-established degree-based topological indices. Then, some Nordhaus-Gaddum-type inequalities for the combination of the Nirmala indices of a graph and its complement are obtained.
引用
收藏
页码:120 / 136
页数:17
相关论文
共 8 条
  • [1] Nordhaus-Gaddum type inequalities of the second Aα-eigenvalue of a graph
    Chen, Yuanyuan
    Li, Dan
    Meng, Jixiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 602 : 57 - 72
  • [2] Nordhaus-Gaddum type inequalities for Laplacian and signless Laplacian eigenvalues
    Ashraf, F.
    Tayfeh-Rezaie, B.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (03)
  • [3] On Nordhaus-Gaddum type inequalities for the game chromatic and game coloring numbers
    Charpentier, Clement
    Dantas, Simone
    de Figueiredo, Celina M. N.
    Furtado, Ana
    Gravier, Sylvain
    DISCRETE MATHEMATICS, 2019, 342 (05) : 1318 - 1324
  • [4] NORDHAUS-GADDUM TYPE INEQUALITIES FOR TREE COVERING NUMBERS ON UNITARY CAYLEY GRAPHS OF FINITE RINGS
    Pongpipat, Denpong
    Nupo, Nuttawoot
    TRANSACTIONS ON COMBINATORICS, 2022, 11 (02) : 111 - 122
  • [5] Signless Laplacian eigenvalue problems of Nordhaus-Gaddum type
    Huang, Xueyi
    Lin, Huiqiu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 581 : 336 - 353
  • [6] On Nirmala Indices-based Entropy Measures of Silicon Carbide Network Si2C3 - III[α, β]
    Shilpa, H. C.
    Gayathri, K.
    Dharmendra, B. N.
    Nagesh, H. M.
    Siddiqui, Muhammad Kamran
    SILICON, 2024, 16 (12) : 4971 - 4981
  • [7] A novel approach to determine the Sombor-type indices via M-polynomial
    Kumar, Virendra
    Das, Shibsankar
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025, 71 (01) : 983 - 1007
  • [8] M-polynomial and related degree-based topological indices of the third type of hex-derived network
    Das, Shibsankar
    Rai, Shikha
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2020, 11 (03): : 267 - 274