Well-posedness for strongly damped abstract Cauchy problems of fractional order

被引:0
作者
Aquino, Joao [1 ]
Lizama, Carlos [2 ]
Prokopczyck, Andrea [1 ]
机构
[1] Univ Estadual Paulista Julio de Mesquita Filho UNE, Dept Matemat, Inst Biociencias Letras & Ciencias Exatas, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[2] Univ Santiago Chile, Fac Ciencias, Dept Matemat & Ciencia Comp, Las Sophoras 173, Santiago 9170022, Chile
关键词
<italic>C</italic>0-semigroup; cosine family; mild solution; solution family; well-posedness; WAVE-EQUATION; CONVERGENCE;
D O I
10.1017/prm.2024.134
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a complex Banach space and B be a closed linear operator with domain $\mathcal{D}(B) \subset X,\,\, a,b,c,d\in\mathbb{R},$ and $0 \lt \beta \lt \alpha.$ We prove that the problem \begin{equation*} u(t) -(aB+bI)(g_{\alpha-\beta}\ast u)(t) -(cB+dI)(g_{\alpha}\ast u)(t) = h(t), \quad t\geq 0, \end{equation*}where $g_{\alpha}(t)=t<^>{\alpha-1}/\Gamma(\alpha)$ and $h:\mathbb{R}_+\to X$ is given, has a unique solution for any initial condition on $\mathcal{D}(B)\times X$ as long as the operator B generates an ad-hoc Laplace transformable and strongly continuous solution family $\{R_{\alpha,\beta}(t)\}_{t\geq 0} \subset \mathcal{L}(X).$ It is shown that such a solution family exists whenever the pair $(\alpha,\beta)$ belongs to a subset of the set $(1,2]\times(0,1]$ and B is the generator of a cosine family or a C0-semigroup in $X.$ In any case, it also depends on certain compatibility conditions on the real parameters $a,b,c,d$ that must be satisfied.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Well-posedness for vector equilibrium problems
    M. Bianchi
    G. Kassay
    R. Pini
    Mathematical Methods of Operations Research, 2009, 70 : 171 - 182
  • [42] On the Well-posedness of Bayesian Inverse Problems
    Latz, Jonas
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (01): : 451 - 482
  • [43] WELL-POSEDNESS OF SYSTEMS OF EQUILIBRIUM PROBLEMS
    Hu, Rong
    Fang, Ya-Ping
    Huang, Nan-Jing
    Wong, Mu-Ming
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (06): : 2435 - 2446
  • [44] On the Well-Posedness of the Cauchy Problem for the Generalized Telegraph Equations
    Kostin, V. A.
    Kostin, A. V.
    Salim, Badran Yasim Salim
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2014, 7 (03): : 50 - 59
  • [45] Well-Posedness for Set Optimization Problems Involving Set Order Relations
    Vui, Pham Thi
    Anh, Lam Quoc
    Wangkeeree, Rabian
    ACTA MATHEMATICA VIETNAMICA, 2020, 45 (02) : 329 - 344
  • [46] Well-Posedness by Perturbations of Variational Problems
    B. Lemaire
    C. Ould Ahmed Salem
    J. P. Revalski
    Journal of Optimization Theory and Applications, 2002, 115 : 345 - 368
  • [47] Well-posedness of fixed point problems
    Dey, Debashis
    Fierro, Raul
    Saha, Mantu
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (02)
  • [48] Well-Posedness for Set Optimization Problems Involving Set Order Relations
    Pham Thi Vui
    Lam Quoc Anh
    Rabian Wangkeeree
    Acta Mathematica Vietnamica, 2020, 45 : 329 - 344
  • [49] Well-posedness of fixed point problems
    Debashis Dey
    Raúl Fierro
    Mantu Saha
    Journal of Fixed Point Theory and Applications, 2018, 20
  • [50] Well-posedness by perturbations of variational problems
    Lemaire, B
    Salem, COA
    Revalski, JP
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 115 (02) : 345 - 368