Well-posedness for strongly damped abstract Cauchy problems of fractional order

被引:0
|
作者
Aquino, Joao [1 ]
Lizama, Carlos [2 ]
Prokopczyck, Andrea [1 ]
机构
[1] Univ Estadual Paulista Julio de Mesquita Filho UNE, Dept Matemat, Inst Biociencias Letras & Ciencias Exatas, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[2] Univ Santiago Chile, Fac Ciencias, Dept Matemat & Ciencia Comp, Las Sophoras 173, Santiago 9170022, Chile
关键词
<italic>C</italic>0-semigroup; cosine family; mild solution; solution family; well-posedness; WAVE-EQUATION; CONVERGENCE;
D O I
10.1017/prm.2024.134
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a complex Banach space and B be a closed linear operator with domain $\mathcal{D}(B) \subset X,\,\, a,b,c,d\in\mathbb{R},$ and $0 \lt \beta \lt \alpha.$ We prove that the problem \begin{equation*} u(t) -(aB+bI)(g_{\alpha-\beta}\ast u)(t) -(cB+dI)(g_{\alpha}\ast u)(t) = h(t), \quad t\geq 0, \end{equation*}where $g_{\alpha}(t)=t<^>{\alpha-1}/\Gamma(\alpha)$ and $h:\mathbb{R}_+\to X$ is given, has a unique solution for any initial condition on $\mathcal{D}(B)\times X$ as long as the operator B generates an ad-hoc Laplace transformable and strongly continuous solution family $\{R_{\alpha,\beta}(t)\}_{t\geq 0} \subset \mathcal{L}(X).$ It is shown that such a solution family exists whenever the pair $(\alpha,\beta)$ belongs to a subset of the set $(1,2]\times(0,1]$ and B is the generator of a cosine family or a C0-semigroup in $X.$ In any case, it also depends on certain compatibility conditions on the real parameters $a,b,c,d$ that must be satisfied.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] On the Well-posedness of Some Generalized Characteristic Cauchy Problems
    Marti, J-A.
    Devoue, V.
    Delcroix, A.
    Allaud, E.
    Vernaeve, H.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2016, 11 (02) : 89 - 99
  • [22] Generalized Substantial Fractional Operators and Well-Posedness of Cauchy Problem
    Hafiz Muhammad Fahad
    Mujeeb ur Rehman
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 1501 - 1524
  • [23] Well-posedness of the Cauchy problem for the fractional power dissipative equations
    Miao, Changxing
    Yuan, Baoquan
    Zhang, Bo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (03) : 461 - 484
  • [24] Generalized Substantial Fractional Operators and Well-Posedness of Cauchy Problem
    Fahad, Hafiz Muhammad
    Ur Rehman, Mujeeb
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (03) : 1501 - 1524
  • [25] Well-posedness and stability of coupled system of wave and strongly damped Petrovsky equations with internal fractional damping
    Zouatnia, Sara
    Boulaaras, Salah
    Amroun, Nour Eddine
    Souid, Mohammed Said
    AFRIKA MATEMATIKA, 2025, 36 (01)
  • [26] AUTOMATIC WELL-POSEDNESS WITH THE ABSTRACT CAUCHY-PROBLEM ON A FRECHET SPACE
    DELAUBENFELS, R
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1993, 48 : 526 - 536
  • [27] Global well-posedness for strongly damped multidimensional generalized Boussinesq equations
    Shen Jihong
    Zhang Mingyou
    Wang Xingchang
    Liu Bowei
    Xu Runzhang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (15) : 4437 - 4450
  • [28] Global well-posedness of a class of singular hyperbolic Cauchy problems
    Pattar, Rahul Raju
    Kiran, N. Uday
    MONATSHEFTE FUR MATHEMATIK, 2023, 200 (02): : 335 - 357
  • [29] Well-posedness and regularity of fractional Rayleigh–Stokes problems
    Jing Na Wang
    Yong Zhou
    Ahmed Alsaedi
    Bashir Ahmad
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [30] The generalized well-posedness of the Cauchy problem for an abstract stochastic equation with multiplicative noise
    I. V. Melnikova
    M. A. Alshanskiy
    Proceedings of the Steklov Institute of Mathematics, 2013, 280 : 134 - 150