Well-posedness for strongly damped abstract Cauchy problems of fractional order

被引:0
|
作者
Aquino, Joao [1 ]
Lizama, Carlos [2 ]
Prokopczyck, Andrea [1 ]
机构
[1] Univ Estadual Paulista Julio de Mesquita Filho UNE, Dept Matemat, Inst Biociencias Letras & Ciencias Exatas, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[2] Univ Santiago Chile, Fac Ciencias, Dept Matemat & Ciencia Comp, Las Sophoras 173, Santiago 9170022, Chile
关键词
<italic>C</italic>0-semigroup; cosine family; mild solution; solution family; well-posedness; WAVE-EQUATION; CONVERGENCE;
D O I
10.1017/prm.2024.134
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a complex Banach space and B be a closed linear operator with domain $\mathcal{D}(B) \subset X,\,\, a,b,c,d\in\mathbb{R},$ and $0 \lt \beta \lt \alpha.$ We prove that the problem \begin{equation*} u(t) -(aB+bI)(g_{\alpha-\beta}\ast u)(t) -(cB+dI)(g_{\alpha}\ast u)(t) = h(t), \quad t\geq 0, \end{equation*}where $g_{\alpha}(t)=t<^>{\alpha-1}/\Gamma(\alpha)$ and $h:\mathbb{R}_+\to X$ is given, has a unique solution for any initial condition on $\mathcal{D}(B)\times X$ as long as the operator B generates an ad-hoc Laplace transformable and strongly continuous solution family $\{R_{\alpha,\beta}(t)\}_{t\geq 0} \subset \mathcal{L}(X).$ It is shown that such a solution family exists whenever the pair $(\alpha,\beta)$ belongs to a subset of the set $(1,2]\times(0,1]$ and B is the generator of a cosine family or a C0-semigroup in $X.$ In any case, it also depends on certain compatibility conditions on the real parameters $a,b,c,d$ that must be satisfied.
引用
收藏
页数:27
相关论文
共 50 条