ε-Ga2O3 solar-blind photodetector: Pyroelectric effect and flame sensing application

被引:3
作者
Zhou, Chang [1 ]
Wang, Jipeng [1 ]
Shu, Lincong [1 ]
Hu, Ji [2 ]
Xi, Zhaoying [1 ]
Li, Shan [1 ]
Tang, Weihua [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Integrated Circuit Sci & Engn, Innovat Ctr Gallium Oxide Semicond IC GAO, Nanjing 210023, Peoples R China
[2] Mianyang Scitech City Inst Photon Technol, Mianyang 621000, Peoples R China
基金
中国国家自然科学基金;
关键词
Schottky photodiode; High temperature; Photodetector; Self-powered; Flame sensor; SCHOTTKY; DIODES;
D O I
10.1016/j.vacuum.2025.114060
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The e-Ga2O3 pyroelectric material is ideal for DUV photodetectors, especially for high-temperature applications like atmospheric monitoring and flame detection. This study discusses the performance of Ni/e-Ga2O3 Schottky photodetectors and their response to high temperatures. At room temperature, the dark current is as low as-1.59 x 10-10 A at-10 V bias voltage, the photo-to-dark current ratio ( PDCR ) is more than 5.0 x 103, the responsivity (R) is 27.68 A/W, the external quantum efficiency (EQE) is 13511 %, and the detectivity (D*) is more than 1.56 x 1013 Jones. High temperatures increase dark current and decrease photocurrent due to phonon scattering and thermal excitation, reducing detection efficiency. However, below 125 degrees C, the detector shows fast response times and strong self-powered capabilities, maintaining good performance up to 150 degrees C. The coupling of pyroelectric and photovoltaic effects enhances photoresponse, offering millisecond-level response times and high resolution, making it a promising candidate for energy-efficient flame detectors.
引用
收藏
页数:8
相关论文
共 32 条
[1]   Temperature-Dependent Characteristics of Ni/Au and Pt/Au Schottky Diodes on β-Ga2O3 [J].
Ahn, Shihyun ;
Ren, F. ;
Yuan, L. ;
Pearton, S. J. ;
Kuramata, A. .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2017, 6 (01) :P68-P72
[2]  
Cai Q, 2021, LIGHT-SCI APPL, V10, DOI 10.1038/s41377-021-00527-4
[3]   Responsivity improvement of a packaged ZnMgO solar blind ultraviolet photodetector via a sealing treatment of silica gel [J].
Chen, Xing ;
Wang, Liyan ;
Liu, Kewei ;
Zhang, Zhenzhong ;
Li, Binghui ;
Wu, Jiabin ;
Wang, Jingyuan ;
Ni, Yingxue ;
Shen, Dezhen .
JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (03) :1089-1094
[4]   Review of Ga2O3-based optoelectronic devices [J].
Guo, D. ;
Guo, Q. ;
Chen, Z. ;
Wu, Z. ;
Li, P. ;
Tang, W. .
MATERIALS TODAY PHYSICS, 2019, 11
[5]   Self-powered solar-blind ZnGa2O4 UV photodetector with ultra-fast response speed [J].
Han, Dongyang ;
Liu, Kewei ;
Hou, Qichao ;
Chen, Xing ;
Yang, Jialin ;
Li, Binghui ;
Zhang, Zhenzhong ;
Liu, Lei ;
Shen, Dezhen .
SENSORS AND ACTUATORS A-PHYSICAL, 2020, 315
[6]   Boosted UV Photodetection Performance in Chemically Etched Amorphous Ga2O3 Thin-Film Transistors [J].
Han, Zuyin ;
Liang, Huili ;
Huo, Wenxing ;
Zhu, Xiaoshan ;
Du, Xiaolong ;
Mei, Zengxia .
ADVANCED OPTICAL MATERIALS, 2020, 8 (08)
[7]   The optimized interface characteristics of β-Ga2O3 Schottky barrier diode with low temperature annealing [J].
Hong, Yue-Hua ;
Zheng, Xue-Feng ;
He, Yun-Long ;
Zhang, Fang ;
Zhang, Xiang-Yu ;
Wang, Xi-Chen ;
Li, Jia-Ning ;
Wang, Dang-Po ;
Lu, Xiao-Li ;
Han, Hong-Bo ;
Ma, Xiao-Hua ;
Hao, Yue .
APPLIED PHYSICS LETTERS, 2021, 119 (13)
[8]  
Jeon S, 2012, NAT MATER, V11, P301, DOI [10.1038/NMAT3256, 10.1038/nmat3256]
[9]   Pyro-Photoelectric Effect Enhanced Dual-Mode Self-Powered ITO/ZnO:Ga Microwire/AlGaN Thin-Film Heterojuncted Ultraviolet Imaging Photodetector [J].
Li, Lei ;
Liu, Zeng ;
Tang, Kai ;
Sha, Shu-Lin ;
Zhang, Shao-Hui ;
Jiang, Ming-Ming ;
Zhang, Mao-Lin ;
Bian, Ang ;
Guo, Yu-Feng ;
Tang, Wei-Hua .
IEEE SENSORS JOURNAL, 2023, 23 (12) :12767-12774
[10]   High-Performance β-Ga2O3 Solar-Blind Schottky Barrier Photodiode With Record Detectivity and Ultrahigh Gain via Carrier Multiplication Process [J].
Li, Zhe ;
Cheng, Yanan ;
Xu, Yu ;
Hu, Zhuangzhuang ;
Zhu, Weidong ;
Chen, Dazheng ;
Feng, Qian ;
Zhou, Hong ;
Zhang, Jincheng ;
Zhang, Chunfu ;
Hao, Yue .
IEEE ELECTRON DEVICE LETTERS, 2020, 41 (12) :1794-1797