Unique continuation property for the Rosenau equation

被引:0
|
作者
Cordoba, Ricardo [1 ]
Corredor, Anyi D. [2 ]
机构
[1] Univ Narino, Narino, Colombia
[2] Univ Cauca, Cauca, Colombia
来源
TAMKANG JOURNAL OF MATHEMATICS | 2024年 / 55卷 / 04期
关键词
Rosenau equation; Carleman estimates; UCP; Treve's inequality; SUPPORT;
D O I
10.5556/j.tkjm.55.2024.5276
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, using an appropriate Carleman-type estimate, we establish a unique continuation result for the Rosenau equation that models the dynamics of dense discrete systems with high order effects.
引用
收藏
页码:391 / 403
页数:13
相关论文
共 50 条
  • [31] Numerical computation of solitary wave solutions of the Rosenau equation
    Erbay, H. A.
    Erbay, S.
    Erkip, A.
    WAVE MOTION, 2020, 98
  • [32] On the regularity of the global attractor for a damped Rosenau equation on R
    Zhou, Deqin
    Wang, Liying
    Mu, Chunlai
    APPLICABLE ANALYSIS, 2017, 96 (08) : 1285 - 1294
  • [33] A new conservative finite difference scheme for the Rosenau equation
    Omrani, Khaled
    Abidi, Faycal
    Achouri, Talha
    Khiari, Noomen
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 201 (1-2) : 35 - 43
  • [34] ON THE GLOBAL ATTRACTOR OF THE DAMPED ROSENAU EQUATION ON THE WHOLE LINE
    Zhou, Deqin
    Mu, Chunlai
    Lin, Ke
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (06) : 1667 - 1684
  • [35] Quantitative unique continuation for Schrodinger operators
    Davey, Blair
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (04)
  • [36] BLOW UP OF SOLUTIONS OF THE ROSENAU EQUATION WITH HYDRODYNAMICALLY DAMPED TERM
    Yilmaz, Zeynep sumeyye
    Misir, Zulal
    Gur, Sevket
    HONAM MATHEMATICAL JOURNAL, 2025, 47 (01): : 119 - 127
  • [37] Solitary Wave Solutions for Generalized Rosenau-KdV Equation
    Amin, Esfahani
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (03) : 396 - 398
  • [38] Optimal L2-growth of the generalized Rosenau equation
    Li, Xiaoyan
    Ikehata, Ryo
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (03)
  • [39] UNIQUE CONTINUATION FOR DISCRETE NONLINEAR WAVE EQUATIONS
    Krueger, Helge
    Teschl, Gerald
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (04) : 1321 - 1330
  • [40] Unique continuation from infinity for linear waves
    Alexakis, Spyros
    Schlue, Volker
    Shao, Arick
    ADVANCES IN MATHEMATICS, 2016, 286 : 481 - 544