Exploring the integration of sulfonated poly(phenylene sulfone) ionomers into the cathode catalyst layers of proton exchange membrane fuel cells

被引:0
|
作者
Yazili-Marini, Didem [1 ]
Fogang, Lionel Talley [1 ]
Marini, Emanuele [1 ]
Morawietz, Tobias [2 ]
Titvinidze, Giorgi [3 ]
Bansmann, Joachim [4 ]
Hoelzle, Markus [1 ]
Joerissen, Ludwig [1 ]
机构
[1] Zentrum Sonnenenergie & Wasserstoff Forsch Baden W, Helmholtzstr 8, D-89081 Ulm, Germany
[2] German Aerosp Ctr DLR, Inst Engn Thermodynam, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany
[3] Agr Univ Georgia, 240 David Aghmashenebeli Alley, Tbilisi 0131, Georgia
[4] Ulm Univ, Inst Surface Chem & Catalysis, Albert Einstein Allee 47, D-89081 Ulm, Germany
关键词
OXYGEN REDUCTION; PERFORMANCE; DEGRADATION; TRANSPORT;
D O I
10.1016/j.jpowsour.2025.236896
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Increasing regulatory pressure on perfluorinated sulfonic acid (PFSA) ionomers demands alternative materials for catalyst-coated membranes (CCMs) in proton exchange membrane fuel cells. Sulfonated poly(phenylene sulfone) (sPPS) has emerged as a promising candidate, and this study compares physical-chemical and electrochemical properties of CCMs using platinum (Pt)-based catalysts in either PFSA- or sPPS-bonded cathodes. During break-in, PFSA-bonded cathode performance stabilizes after eight voltage cycles with low charge transfer resistance, while sPPS requires 30-40 cycles. Atomic force microscopy indicates electrodes undergo partial ionomer redistribution over cycling, affecting proton conduction and oxygen diffusion. Polarization curves indicate PFSA attains higher cell voltages at the low current densities, owing to a fourfold greater Pt mass activity compared to sPPS, despite comparable Tafel slopes. X-ray photoelectron spectroscopy suggests strong Pt-sPPS interactions, potentially reducing catalytic activity by covering active Pt-surface with sPPS. At high current densities, under fully humidified conditions, sPPS benefits from enhanced oxygen transport, mitigating mass transport limitations. Mercury intrusion porosimetry shows abundant macropores in sPPS-based cathodes, promoting oxygen transport, while PFSA's balanced meso-/macropore distribution supports hydration and ionic conductivity. Future efforts-e.g., deploying Pt-alloy catalysts, refining break-in protocols, and optimizing cathode architecture-could alleviate sPPS's kinetic constraints, supporting its viability as a PFSA alternative.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Enhancing proton conduction of sulfonated poly (phenylene ether ether sulfone) membrane by charged surface modifying macromolecules for H2/O2 fuel cells
    Neelakandan, S.
    Kanagaraj, P.
    Nagendran, A.
    Rana, D.
    Matsuura, T.
    Muthumeenal, A.
    RENEWABLE ENERGY, 2015, 78 : 306 - 313
  • [32] Nanofiber Cathode Catalyst Layer Model for a Proton Exchange Membrane Fuel Cell
    Dever, Dennis O.
    Cairncross, Richard A.
    Elabd, Yossef A.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2014, 11 (04):
  • [33] Sulfonated poly(arylene ether)/heteropolyacids nanocomposite membranes for proton exchange membrane fuel cells
    Amirinejad, Mehdi
    Madaeni, Sayed Siavash
    Lee, Kwan-Soo
    Ko, Un
    Rafiee, Ezzat
    Lee, Jae-Suk
    ELECTROCHIMICA ACTA, 2012, 62 : 227 - 233
  • [34] 4-Aminopyridine grafted sulfonated poly(arylene ether ketone sulfone) proton exchange membrane with high relative selectivity for fuel cells
    Wang, Chunmei
    Li, Hai Qiang
    Wang, Zhe
    Xu, Jingmei
    Liu, Chang
    Liu, Wenchang
    Chen, Zhaoyu
    Du, Xinming
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (54) : 29738 - 29748
  • [35] Highly efficient sulfonated polybenzimidazole as a proton exchange membrane for microbial fuel cells
    Singha, Shuvra
    Jana, Tushar
    Modestra, J. Annie
    Kumar, A. Naresh
    Mohan, S. Venkata
    JOURNAL OF POWER SOURCES, 2016, 317 : 143 - 152
  • [36] New Proton Exchange Membrane Blends based on Polybenzimidazole and Poly(1,4- Phenylene Ether Ether Sulfone) for Fuel Cells Application
    Kakavand, Parvaneh
    Mokhtari, Zahra
    Javanbakht, Mehran
    Hooshyari, Khadijeh
    ANALYTICAL & BIOANALYTICAL ELECTROCHEMISTRY, 2023, 15 (06): : 486 - 505
  • [37] Patterning Catalyst Layers with Microscale Features by Soft Lithography Techniques for Proton Exchange Membrane Fuel Cells
    Paul, Michael T. Y.
    Kim, Dongho
    Saha, Madhu S.
    Stumper, Juergen
    Gates, Byron D.
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (01): : 478 - 486
  • [38] Phase-change-related degradation of catalyst layers in proton-exchange-membrane fuel cells
    Hwang, Gi Suk
    Kim, Hyoungchul
    Lujan, Roger
    Mukundan, Rangachary
    Spernjak, Dusan
    Borup, Rodney L.
    Kaviany, Massoud
    Kim, Moo Hwan
    Weber, Adam Z.
    ELECTROCHIMICA ACTA, 2013, 95 : 29 - 37
  • [39] Improving the efficiency of fully hydrocarbon-based proton-exchange membrane fuel cells by ionomer content gradients in cathode catalyst layers
    Hien Nguyen
    Sultanova, Dilara
    Heizmann, Philipp A.
    Vierrath, Severin
    Breitwieser, Matthias
    MATERIALS ADVANCES, 2022, 3 (23): : 8460 - 8468
  • [40] Sulfonated Oligomer-crosslinked Fluorinated Poly(aryl ether sulfone)-based Proton Exchange Membranes for Fuel Cells
    Zhang, X.
    Lu, Y.
    Yan, X.
    Hu, Z.
    Chen, S.
    FUEL CELLS, 2018, 18 (04) : 397 - 407