Copula-Based Fuzzy Clustering of Count Data with Total Variation Distance

被引:0
|
作者
D'Urso, Pierpaolo [1 ]
De Giovanni, Livia [2 ,3 ]
Federico, Lorenzo [2 ,3 ]
Vitale, Vincenzina [1 ]
机构
[1] Sapienza Univ, Dept Social Sci & Econ, Piazzale Aldo Moro 5, I-00185 Rome, Lazio, Italy
[2] Luiss Univ, Dept Polit Sci, Viale Romania 32, I-00197 Rome, Lazio, Italy
[3] Luiss Univ, Data Lab, Viale Romania 32, I-00197 Rome, Lazio, Italy
关键词
Total variation distance; Fuzzy C-medoids; Count data;
D O I
10.1007/978-3-031-65993-5_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel fuzzy clustering technique designed specifically for count data, referred to as the Fuzzy C-medoids algorithm based on Total Variation Distance. We evaluate its performance against a benchmark relying on Shannon divergence, commonly employed in scenarios involving discrete probability distributions, through simulation analysis. A comprehensive evaluation of the proposed approach's effectiveness is carried out, revealing promising results. The study's findings emphasize the potential of the proposed fuzzy method, particularly in scenarios where discrete probability distributions are involved.
引用
收藏
页码:126 / 133
页数:8
相关论文
共 50 条
  • [1] Copula-based fuzzy clustering of spatial time series
    Disegna, Marta
    D'Urso, Pierpaolo
    Durante, Fabrizio
    SPATIAL STATISTICS, 2017, 21 : 209 - 225
  • [2] A variable clustering approach for overdispersed high-dimensional count data using a copula-based mixture model
    Brini, Alberto
    Manju, Abu
    van den Heuvel, Edwin R.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [3] A generalization of a copula-based construction of fuzzy implications
    Fernandez-Sanchez, Juan
    Kolesarova, Anna
    Mesiar, Radko
    Quesada-Molina, Jose Juan
    Ubeda-Flores, Manuel
    FUZZY SETS AND SYSTEMS, 2023, 456 : 197 - 207
  • [4] A copula-based family of fuzzy implication operators
    Dolati, Ali
    Fernandez Sanchez, Juan
    Ubeda-Flores, Manuel
    FUZZY SETS AND SYSTEMS, 2013, 211 : 55 - 61
  • [5] Copula-based bivariate finite mixture regression models with an application for insurance claim count data
    Lluís Bermúdez
    Dimitris Karlis
    TEST, 2022, 31 : 1082 - 1099
  • [6] A fuzzy clustering approach for fuzzy data based on a generalized distance
    Belen Ramos-Guajardo, Ana
    Ferraro, Maria Brigida
    FUZZY SETS AND SYSTEMS, 2020, 389 : 29 - 50
  • [7] Copula-based bivariate finite mixture regression models with an application for insurance claim count data
    Bermudez, Lluis
    Karlis, Dimitris
    TEST, 2022, 31 (04) : 1082 - 1099
  • [8] COPULA-BASED QUANTILE REGRESSION FOR LONGITUDINAL DATA
    Wang, Huixia Judy
    Feng, Xingdong
    Dong, Chen
    STATISTICA SINICA, 2019, 29 (01) : 245 - 264
  • [9] Copula-based semiparametric models for spatiotemporal data
    Tang, Yanlin
    Wang, Huixia J.
    Sun, Ying
    Hering, Amanda S.
    BIOMETRICS, 2019, 75 (04) : 1156 - 1167
  • [10] A copula-based clustering algorithm to analyse EU country diets
    Di Lascio, F. Marta L.
    Disegna, Marta
    KNOWLEDGE-BASED SYSTEMS, 2017, 132 : 72 - 84