EMPLOYING THE SOIL DATA CUBE AND DIGITAL SOIL MAPPING TECHNIQUES FOR NATIONAL TOPSOIL PREDICTIONS OF SOIL ORGANIC CARBON AND CLAY CONTENT OVER THE LITHUANIAN GRASSLANDS

被引:0
作者
Samarinas, Nikiforos [1 ,2 ,3 ]
Tsakiridis, Nikolaos L. [1 ,2 ,3 ]
Kalopesal, Eleni [1 ,2 ]
Zalidis, George C. [3 ]
机构
[1] Aristotle Univ Thessaloniki, Spect, SpectraLab Grp, Lab Remote Sensing, Thermi 57001, Greece
[2] Aristotle Univ Thessaloniki, GIS, Sch Agr, Thermi 57001, Greece
[3] Interbalkan Environm Ctr Green Innovat Hub, 18 Loutron Str, Lagadas 57200, Greece
来源
IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024 | 2024年
关键词
machine learning; big data; artificial intelligence; soil health; soil organic carbon;
D O I
10.1109/IGARSS53475.2024.10642615
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Grasslands store a large fraction of terrestrial carbon, but are susceptible to degradation from anthropogenic disturbances and climatic changes. Soil monitoring can aid in conserving their ecosystem services. To overcome limitations posed by existing soil maps (e.g., low spatial resolution), we leverage the Soil Data Cube and Digital Soil Mapping techniques, to develop a cloud-optimized pipeline for large-scale soil monitoring using open access Copernicus data. In particular, we employ data from the LUCAS topsoil database, ERA5 climate data from the Copernicus Climate Data Store, and the EU-DEM from the Copernicus Land Monitoring Service. Using Recursive Feature Elimination and the Random Forest algorithm, the methodology achieves an RMSE of 49.1 g C / kg and an R-2 of 0.66 for topsoil Organic Carbon, and an RMSE of 52.1 g / kg with an R-2 of 0.66 for topsoil Clay content. Our method enhances spatio-temporal representativeness and reliability, aligning with the European Union's policies like the Common Agricultural Policy, the new green deal, and ecoschemes. The outcomes of this study are the production of high-resolution soil maps tailored to Lithuanian grasslands. These advancements in soil health monitoring empower more effective and sustainable soil management practices.
引用
收藏
页码:1585 / 1589
页数:5
相关论文
共 50 条
[41]   Application of Ordinary Kriging in Mapping Soil Organic Carbon in Chad using SoilGrids data [J].
Douzoune, Kella ;
Oloukoi, Joseph ;
Gongnet, Emmanuel Ehnon ;
Affossogbe, Tranquillin Sedjro Antoine .
SOUTH AFRICAN JOURNAL OF GEOMATICS, 2024, 13 (02) :397-408
[42]   Fine-resolution mapping of soil organic carbon based on multivariate secondary data [J].
Simbahan, Gregorio C. ;
Dobermann, Achim ;
Goovaerts, Pierre ;
Ping, Jianli ;
Haddix, Michelle L. .
GEODERMA, 2006, 132 (3-4) :471-489
[43]   Incorporating agricultural practices in digital mapping improves prediction of cropland soil organic carbon content: The case of the Tuojiang River Basin [J].
Wang, Qi ;
Le Noe, Julia ;
Li, Qiquan ;
Lan, Ting ;
Gao, Xuesong ;
Deng, Ouping ;
Li, Yang .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 330
[44]   Digital soil mapping of organic carbon concentration in paddy growing soils of Northern Sri Lanka [J].
Ratnayake, R. R. ;
Karunaratne, S. B. ;
Lessels, J. S. ;
Yogenthiran, N. ;
Rajapaksha, R. P. S. K. ;
Gnanavelrajah, N. .
GEODERMA REGIONAL, 2016, 7 (02) :167-176
[45]   Digital Mapping of Soil Organic Carbon with Machine Learning in Dryland of Northeast and North Plain China [J].
Zhang, Xianglin ;
Xue, Jie ;
Chen, Songchao ;
Wang, Nan ;
Shi, Zhou ;
Huang, Yuanfang ;
Zhuo, Zhiqing .
REMOTE SENSING, 2022, 14 (10)
[46]   Digital mapping of soil organic carbon hotspots in nature conservation areas in the region of Flanders, Belgium [J].
Ottoy, S. ;
Truyers, E. ;
De Block, M. ;
Lettens, S. ;
Swinnen, W. ;
Broothaerts, N. ;
Hendrix, R. ;
Van Orshoven, J. ;
Verstraeten, G. ;
De Vos, B. ;
Vancampenhout, K. .
GEODERMA REGIONAL, 2022, 30
[47]   Digital mapping of soil organic carbon in a plain area based on time-series features [J].
Yan, Kun ;
Wang, Decai ;
Feng, Yongkang ;
Hou, Siyu ;
Zhang, Yamei ;
Yang, Huimin .
ECOLOGICAL INDICATORS, 2025, 171
[48]   A novel approach to map soil organic carbon content using spectroscopic and environmental data [J].
Rial, Marcela ;
Martinez Cortizas, Antonio ;
Rodriguez-Lado, Luis .
SPATIAL STATISTICS CONFERENCE 2015, PART 2, 2015, 27 :49-52
[49]   Assessing the 3D distribution of soil organic carbon by integrating predictions of water and tillage erosion into a digital soil mapping-approach: a case study for silt loam cropland (Belgium) [J].
Baert, P. ;
Vanmaercke, M. ;
Meersmans, J. .
GEODERMA, 2024, 447
[50]   High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms [J].
Zhou, Tao ;
Geng, Yajun ;
Chen, Jie ;
Pan, Jianjun ;
Haase, Dagmar ;
Lausch, Angela .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 729