Forecasting Intradialytic Hypotension: A Comparative Analysis of Machine-Learning and Deep-Learning Approaches

被引:0
作者
Huang, Chun-Te [1 ,2 ]
机构
[1] Taichung Vet Gen Hosp, Taichung, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Yangming Campus, Taipei, Taiwan
来源
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY | 2024年 / 35卷 / 10期
关键词
D O I
10.1681/ASN.2024ndm5wrnd
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
TH-PO016
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Comparison of Machine-Learning and Deep-Learning Methods for the Prediction of Osteoradionecrosis Resulting From Head and Neck Cancer Radiation Therapy
    Reber, Brandon
    Van Dijk, Lisanne
    Anderson, Brian
    Mohamed, Abdallah Sherif Radwan
    Fuller, Clifton
    Lai, Stephen
    Brock, Kristy
    ADVANCES IN RADIATION ONCOLOGY, 2023, 8 (04)
  • [42] Prescriptive and Descriptive Approaches to Machine-Learning Transparency
    Adkins, David
    Alsallakh, Bilal
    Cheema, Adeel
    Kokhlikyan, Narine
    McReynolds, Emily
    Mishra, Pushkar
    Procope, Chavez
    Sawruk, Jeremy
    Wang, Erin
    Zvyagina, Polina
    EXTENDED ABSTRACTS OF THE 2022 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2022, 2022,
  • [43] Preface: machine-learning approaches for computational mechanics
    Li, Z.
    Hu, Guohui
    Wang, Zhiliang
    Karniadakis, G. E.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2023, 44 (07) : 1035 - 1038
  • [44] Editorial: Machine and deep-learning for computational neuroscience
    Dhiman, Gaurav
    Viriyasitavat, Wattana
    Nagar, Atulya K. K.
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2023, 17
  • [45] Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images
    Brehar, Raluca
    Mitrea, Delia-Alexandrina
    Vancea, Flaviu
    Marita, Tiberiu
    Nedevschi, Sergiu
    Lupsor-Platon, Monica
    Rotaru, Magda
    Badea, Radu Ioan
    SENSORS, 2020, 20 (11)
  • [46] Classifying developmental delays with EEG: A comparative study of machine learning and deep learning approaches
    Usman, Muhammad
    Lin, Wen-Yi
    Lin, Yi-Yin
    Hsieh, Sheng-Ta
    Chen, Yao-Tien
    Lo, Yu-Chun
    Lin, Chun-Ling
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2025, 45 (02) : 229 - 246
  • [47] Supervised Machine-learning Predictive Analytics for Prediction of Postinduction Hypotension
    Kendale, Samir
    Kulkarni, Prathamesh
    Rosenberg, Andrew D.
    Wang, Jing
    ANESTHESIOLOGY, 2018, 129 (04) : 675 - 688
  • [48] Load Forecasting with Machine Learning and Deep Learning Methods
    Cordeiro-Costas, Moises
    Villanueva, Daniel
    Eguia-Oller, Pablo
    Martinez-Comesana, Miguel
    Ramos, Sergio
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [49] A hybrid machine-learning model for solar irradiance forecasting
    Almarzooqi, Ameera M.
    Maalouf, Maher
    El-Fouly, Tarek H. M.
    Katzourakis, Vasileios E.
    El Moursi, Mohamed S.
    Chrysikopoulos, Constantinos, V
    CLEAN ENERGY, 2024, 8 (01): : 100 - 110
  • [50] Lag-l forecasting and machine-learning algorithms
    Ahn, Jae Joon
    Son, Il Suh
    Oh, Kyong Joo
    Kim, Tae Yoon
    Song, Gyu Moon
    EXPERT SYSTEMS, 2011, 28 (03) : 269 - 282