Protocol for processing multivariate time-series electronic health records of COVID-19 patients

被引:0
|
作者
Wang, Zixiang [2 ]
Zhu, Yinghao [2 ]
Sui, Dehao [2 ]
Wang, Tianlong [2 ]
Zhang, Yuntao [2 ]
Wang, Yasha [2 ]
Pan, Chengwei [7 ]
Gao, Junyi [3 ,4 ]
Ma, Liantao [2 ,5 ]
Wang, Ling [6 ]
Zhang, Xiaoyun [1 ]
机构
[1] Peking Univ, Sch & Hosp Stomatol, Beijing, Peoples R China
[2] Peking Univ, Beijing, Peoples R China
[3] Hlth Data Res, London, England
[4] Univ Edinburgh, Edinburgh, Scotland
[5] Peking Univ, Key Lab High Confidence Software Technol, Minist Educ, Beijing, Peoples R China
[6] Xuzhou Med Univ, Affiliated Xuzhou Municipal Hosp, Xuzhou, Jiangsu, Peoples R China
[7] Beihang Univ, Beijing, Peoples R China
来源
STAR PROTOCOLS | 2025年 / 6卷 / 01期
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
D O I
10.1016/j.xpro.2025.103669
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The lack of standardized techniques for processing complex health data from COVID-19 patients hinders the development of accurate predictive models in healthcare. To address this, we present a protocol for utilizing real-world multivariate time-series electronic health records of COVID-19 patients. We describe steps for covering the necessary setup, data standardization, and formatting. We then provide detailed instructions for creating datasets and for training and evaluating AI models designed to predict two key outcomes: in-hospital mortality and length of stay. For complete details on the use and execution of this protocol, please refer to Gao et al.1
引用
收藏
页数:14
相关论文
共 50 条
  • [31] The impact of the COVID-19 pandemic on children and adolescent mental health inpatient service use in England: An interrupted time-series analysis of national patient records
    Tsiachristas, A.
    Holland, J.
    Guo, B.
    Sayal, K.
    Pari, A.
    EUROPEAN PSYCHIATRY, 2023, 66 : S340 - S341
  • [32] Application of a time-series deep learning model to predict cardiac dysrhythmias in electronic health records
    Guo, Aixia
    Smith, Sakima
    Khan, Yosef M.
    Langabeer, James R., II
    Foraker, Randi E.
    PLOS ONE, 2021, 16 (09):
  • [33] Learning and diSentangling patient static information from time-series Electronic hEalth Records (STEER)
    Liao, Wei
    Voldman, Joel
    PLOS DIGITAL HEALTH, 2024, 3 (10):
  • [35] Estimating Time-Series Changes in Social Sensitivity for COVID-19 @ Twitter in Japan
    Saito, Ryuichi
    Haruyama, Shinichiro
    Transactions of the Japanese Society for Artificial Intelligence, 2022, 37 (03):
  • [36] COVID-19 Pandemic Data Modeling in Pakistan Using Time-Series SIR
    Taimoor, Muhammad
    Ali, Sajid
    Shah, Ismail
    Muwanika, Fred Roland
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [37] Intelligent computing on time-series data analysis and prediction of COVID-19 pandemics
    Dash, Sujata
    Chakraborty, Chinmay
    Giri, Sourav K.
    Pani, Subhendu Kumar
    PATTERN RECOGNITION LETTERS, 2021, 151 (151) : 69 - 75
  • [38] Predicting COVID-19 cases using bidirectional LSTM on multivariate time series
    Said, Ahmed Ben
    Erradi, Abdelkarim
    Aly, Hussein Ahmed
    Mohamed, Abdelmonem
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (40) : 56043 - 56052
  • [39] Time-Series Analysis and Healthcare Implications of COVID-19 Pandemic in Saudi Arabia
    Zrieq, Rafat
    Kamel, Souad
    Boubaker, Sahbi
    Algahtani, Fahad D.
    Alzain, Mohamed Ali
    Alshammari, Fares
    Alshammari, Fahad Saud
    Aldhmadi, Badr Khalaf
    Atique, Suleman
    Al-Najjar, Mohammad A. A.
    Villareal, Sandro C.
    HEALTHCARE, 2022, 10 (10)
  • [40] Epidemiological behavior of the COVID-19 contamination curve in Brazil: Time-series analysis
    Bento de Morais, Thiffany Nayara
    da Silva Costaid, Ketyllem Tayanne
    Capistrano, Gustavo Nepomuceno
    de Andrade, Fabia Barbosa
    PLOS ONE, 2022, 17 (09):