Protocol for processing multivariate time-series electronic health records of COVID-19 patients

被引:0
|
作者
Wang, Zixiang [2 ]
Zhu, Yinghao [2 ]
Sui, Dehao [2 ]
Wang, Tianlong [2 ]
Zhang, Yuntao [2 ]
Wang, Yasha [2 ]
Pan, Chengwei [7 ]
Gao, Junyi [3 ,4 ]
Ma, Liantao [2 ,5 ]
Wang, Ling [6 ]
Zhang, Xiaoyun [1 ]
机构
[1] Peking Univ, Sch & Hosp Stomatol, Beijing, Peoples R China
[2] Peking Univ, Beijing, Peoples R China
[3] Hlth Data Res, London, England
[4] Univ Edinburgh, Edinburgh, Scotland
[5] Peking Univ, Key Lab High Confidence Software Technol, Minist Educ, Beijing, Peoples R China
[6] Xuzhou Med Univ, Affiliated Xuzhou Municipal Hosp, Xuzhou, Jiangsu, Peoples R China
[7] Beihang Univ, Beijing, Peoples R China
来源
STAR PROTOCOLS | 2025年 / 6卷 / 01期
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
D O I
10.1016/j.xpro.2025.103669
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The lack of standardized techniques for processing complex health data from COVID-19 patients hinders the development of accurate predictive models in healthcare. To address this, we present a protocol for utilizing real-world multivariate time-series electronic health records of COVID-19 patients. We describe steps for covering the necessary setup, data standardization, and formatting. We then provide detailed instructions for creating datasets and for training and evaluating AI models designed to predict two key outcomes: in-hospital mortality and length of stay. For complete details on the use and execution of this protocol, please refer to Gao et al.1
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Predicting the outcome for COVID-19 patients by applying time series classification to electronic health records
    Davi Silva Rodrigues
    Ana Catharina S. Nastri
    Marcello M. Magri
    Maura Salaroli de Oliveira
    Ester C. Sabino
    Pedro H. M. F. Figueiredo
    Anna S. Levin
    Maristela P. Freire
    Leila S. Harima
    Fátima L. S. Nunes
    João Eduardo Ferreira
    BMC Medical Informatics and Decision Making, 22
  • [2] Predicting the outcome for COVID-19 patients by applying time series classification to electronic health records
    Rodrigues, Davi Silva
    Nastri, Ana Catharina S.
    Magri, Marcello M.
    de Oliveira, Maura Salaroli
    Sabino, Ester C.
    Figueiredo, Pedro H. M. F.
    Levin, Anna S.
    Freire, Maristela P.
    Harima, Leila S.
    Nunes, Fatima L. S.
    Ferreira, Joao Eduardo
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [3] Health worker protests and the COVID-19 pandemic: an interrupted time-series analysis
    Sharma, Kartik
    Brophy, Sorcha
    Law, Michael
    Sriram, Veena
    BULLETIN OF THE WORLD HEALTH ORGANIZATION, 2024, 102 (09) : 650 - 656
  • [4] Impact of COVID-19 on access to cancer care in Rwanda: a retrospective time-series study using electronic medical records data
    Habinshuti, Placide
    Nshimyiryo, Alphonse
    Fejfar, Donald Luke
    Niyigena, Anne
    Cubaka, Vincent K.
    Karema, Nadine
    Bigirimana, Jean Bosco
    Shyirambere, Cyprien
    Barnhart, Dale A.
    Kateera, Fredrick
    Fulcher, Isabel
    BMJ OPEN, 2022, 12 (12):
  • [5] Anomaly Detection in COVID-19 Time-Series Data
    Homayouni H.
    Ray I.
    Ghosh S.
    Gondalia S.
    Kahn M.G.
    SN Computer Science, 2021, 2 (4)
  • [6] Evaluating Temporal Fidelity in Synthetic Time-series Electronic Health Records
    Budu, Emmanuella
    Soliman, Amira
    Rognvaldsson, Thorsteinn
    Etminani, Farzaneh
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 541 - 548
  • [7] Using Electronic Health Records for Predicting Hospitalization of COVID-19 Patients in Massachusetts
    Dashti, Hesam
    Roche, Elise C.
    Bates, David W.
    Cook, Nancy R.
    Mora, Samia
    Demler, Olga
    CIRCULATION, 2020, 142
  • [8] Predicting Cardiovascular Health Trajectories in Time-series Electronic Health Records With Deep Learning
    Guo, Aixia
    Foraker, Randi E.
    CIRCULATION, 2019, 140
  • [9] Predicting cardiovascular health trajectories in time-series electronic health records with LSTM models
    Aixia Guo
    Rahmatollah Beheshti
    Yosef M. Khan
    James R. Langabeer
    Randi E. Foraker
    BMC Medical Informatics and Decision Making, 21
  • [10] Predicting cardiovascular health trajectories in time-series electronic health records with LSTM models
    Guo, Aixia
    Beheshti, Rahmatollah
    Khan, Yosef M.
    Langabeer, James R., II
    Foraker, Randi E.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (01)