共 50 条
ON THE CONVERGENCE OF THE DISCONTINUOUS GALERKIN SCHEME FOR EINSTEIN-SCALAR EQUATIONS
被引:0
|作者:
Chen, Yuewen
[1
]
Shu, Chi-wang
[2
]
Yau, Shing-tung
[1
,3
]
机构:
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[3] Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing 101408, Peoples R China
关键词:
Einstein-scalar equations;
discontinuous Galerkin scheme;
FINITE-ELEMENT-METHOD;
CONSERVATION-LAWS;
GENERALIZED SOLUTIONS;
NUMERICAL RELATIVITY;
GRAVITATIONAL-WAVES;
BOUNDARY-CONDITIONS;
SMOOTH SOLUTIONS;
EVOLUTION;
D O I:
10.1090/mcom/4077
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We prove the stability and convergence of the high order discontinuous Galerkin scheme to spherically symmetric Einstein-scalar equations for a class of large initial data that ensures the formation of a black hole. Having chosen the Bondi coordinate system, we achieve L2 stability and obtain the optimal error estimates.
引用
收藏
页数:31
相关论文