ON THE CONVERGENCE OF THE DISCONTINUOUS GALERKIN SCHEME FOR EINSTEIN-SCALAR EQUATIONS

被引:0
|
作者
Chen, Yuewen [1 ]
Shu, Chi-wang [2 ]
Yau, Shing-tung [1 ,3 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[3] Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing 101408, Peoples R China
关键词
Einstein-scalar equations; discontinuous Galerkin scheme; FINITE-ELEMENT-METHOD; CONSERVATION-LAWS; GENERALIZED SOLUTIONS; NUMERICAL RELATIVITY; GRAVITATIONAL-WAVES; BOUNDARY-CONDITIONS; SMOOTH SOLUTIONS; EVOLUTION;
D O I
10.1090/mcom/4077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the stability and convergence of the high order discontinuous Galerkin scheme to spherically symmetric Einstein-scalar equations for a class of large initial data that ensures the formation of a black hole. Having chosen the Bondi coordinate system, we achieve L2 stability and obtain the optimal error estimates.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] An artificial diffusivity discontinuous Galerkin scheme for discontinuous flows
    Yu, Jian
    Yan, Chao
    COMPUTERS & FLUIDS, 2013, 75 : 56 - 71
  • [22] Conformal and covariant Z4 formulation of the Einstein equations: Strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes
    Dumbser, Michael
    Guercilena, Federico
    Koeppel, Sven
    Rezzolla, Luciano
    Zanotti, Olindo
    PHYSICAL REVIEW D, 2018, 97 (08)
  • [23] A Nonoscillatory Discontinuous Galerkin Transport Scheme on the Cubed Sphere
    Zhang, Yifan
    Nair, Ramachandran D.
    MONTHLY WEATHER REVIEW, 2012, 140 (09) : 3106 - 3126
  • [24] A positivity-preserving semi-implicit discontinuous Galerkin scheme for solving extended magnetohydrodynamics equations
    Zhao, Xuan
    Yang, Yang
    Seyler, Charles E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 278 : 400 - 415
  • [25] Mass preserving discontinuous Galerkin methods for Schrodinger equations
    Lu, Wenying
    Huang, Yunqing
    Liu, Hailiang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 282 : 210 - 226
  • [26] DISCONTINUOUS GALERKIN METHODS FOR THE VLASOV-MAXWELL EQUATIONS
    Cheng, Yingda
    Gamba, Irene M.
    Li, Fengyan
    Morrison, Philip J.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) : 1017 - 1049
  • [27] ON THE CONVERGENCE OF A SHOCK CAPTURING DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS
    Zakerzadeh, Mohammad
    May, Georg
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) : 874 - 898
  • [28] SUPERCONVERGENCE OF DISCONTINUOUS GALERKIN METHODS FOR LINEAR HYPERBOLIC EQUATIONS
    Cao, Waixiang
    Zhang, Zhimin
    Zou, Qingsong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2555 - 2573
  • [29] A hyperbolicity-preserving discontinuous stochastic Galerkin scheme for uncertain hyperbolic systems of equations
    Duerrwaechter, Jakob
    Kuhn, Thomas
    Meyer, Fabian
    Schlachter, Louisa
    Schneider, Florian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 370
  • [30] Stable Interface Conditions for Discontinuous Galerkin Approximations of Navier-Stokes Equations
    Rahunanthan, Arunasalam
    Stanescu, Dan
    JOURNAL OF SCIENTIFIC COMPUTING, 2009, 41 (01) : 118 - 138