ON THE CONVERGENCE OF THE DISCONTINUOUS GALERKIN SCHEME FOR EINSTEIN-SCALAR EQUATIONS

被引:0
|
作者
Chen, Yuewen [1 ]
Shu, Chi-wang [2 ]
Yau, Shing-tung [1 ,3 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[3] Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing 101408, Peoples R China
关键词
Einstein-scalar equations; discontinuous Galerkin scheme; FINITE-ELEMENT-METHOD; CONSERVATION-LAWS; GENERALIZED SOLUTIONS; NUMERICAL RELATIVITY; GRAVITATIONAL-WAVES; BOUNDARY-CONDITIONS; SMOOTH SOLUTIONS; EVOLUTION;
D O I
10.1090/mcom/4077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the stability and convergence of the high order discontinuous Galerkin scheme to spherically symmetric Einstein-scalar equations for a class of large initial data that ensures the formation of a black hole. Having chosen the Bondi coordinate system, we achieve L2 stability and obtain the optimal error estimates.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] EXACT-SOLUTIONS OF EINSTEIN AND EINSTEIN-SCALAR EQUATIONS IN 2+1 DIMENSIONS
    VIRBHADRA, KS
    PRAMANA-JOURNAL OF PHYSICS, 1995, 44 (04): : 317 - 322
  • [2] SUPERCONVERGENCE OF DISCONTINUOUS GALERKIN METHOD FOR SCALAR NONLINEAR HYPERBOLIC EQUATIONS
    Cao, Waixiang
    Shu, Chi-Wang
    Yang, Yang
    Zhang, Zhimin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (02) : 732 - 765
  • [3] Application of local discontinuous Galerkin method to Einstein equations
    Cao, Zhoujian
    Fu, Pei
    Ji, Li-Wei
    Xia, Yinhua
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2019, 28 (01):
  • [4] A NOTE ON THE CONVERGENCE OF THE DISCONTINUOUS GALERKIN METHOD FOR A SCALAR HYPERBOLIC EQUATION
    PETERSON, TE
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (01) : 133 - 140
  • [5] An operator-based local discontinuous Galerkin method compatible with the BSSN formulation of the Einstein equations
    Miller, Jonah M.
    Schnetter, Erik
    CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (01)
  • [6] Implicit Discontinuous Galerkin Scheme for Discontinuous Bathymetry in Shallow Water Equations
    Lee, Haegyun
    KSCE JOURNAL OF CIVIL ENGINEERING, 2020, 24 (09) : 2694 - 2705
  • [7] Implicit discontinuous Galerkin scheme for shallow water equations
    Lee, Haegyun
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2019, 33 (07) : 3301 - 3310
  • [8] A hybridized discontinuous Petrov-Galerkin scheme for scalar conservation laws
    Moro, D.
    Nguyen, N. C.
    Peraire, J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 91 (09) : 950 - 970
  • [9] A Lagrangian Discontinuous Galerkin Scheme for the Compressible Euler Equations on Unstructured Triangular Meshes
    Zhao, Xiaolong
    Yu, Xijun
    Song, Shicang
    Zou, Shijun
    Qing, Fang
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2024,
  • [10] ON THE CONVERGENCE OF SPACE-TIME DISCONTINUOUS GALERKIN SCHEMES FOR SCALAR CONSERVATION LAWS
    May, Georg
    Zakerzadeh, Mohammad
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2452 - 2465