Sub critical epidemics on random graphs

被引:0
|
作者
Nguyen, Oanh [1 ]
Sly, Allan [2 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02906 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Contact process; Epidemic; Random graph; Phase transition; Extinction; CONTACT PROCESS; EXTINCTION TIME; PHASE; TRANSITION; SPARSE;
D O I
10.1016/j.aim.2024.110102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the contact process on random graphs with low infection rate ). For random d- regular graphs, it is known that the survival time is O (log n ) below the critical ) c . By contrast, on the Erd & odblac;s-R & eacute;nyi random graphs G(n, d/n), rare high-degree vertices result in much longer survival times. We show that the survival time is governed by high-density local configurations. In particular, we show that there is a long string of high-degree vertices on which the infection lasts for time n lambda 2+o(1) . To establish a matching upper bound, we introduce a modified version of the contact process which ignores infections that do not lead to further infections and allows for a sharper recursive analysis on branching process trees, the local-weak limit of the graph. Our methods, moreover, generalize to random graphs with given degree distributions that have exponential moments. (c) 2024 Published by Elsevier Inc.
引用
收藏
页数:57
相关论文
共 50 条
  • [1] SURVIVAL AND EXTINCTION OF EPIDEMICS ON RANDOM GRAPHS WITH GENERAL DEGREE
    Bhamidi, Shankar
    Nam, Danny
    Oanh Nguyen
    Sly, Allan
    ANNALS OF PROBABILITY, 2021, 49 (01) : 244 - 286
  • [2] CRITICAL EPIDEMICS, RANDOM GRAPHS, AND BROWNIAN MOTION WITH A PARABOLIC DRIFT
    Van der Hofstad, Remco
    Janssen, A. J. E. M.
    Van Leeuwaarden, Johan S. H.
    ADVANCES IN APPLIED PROBABILITY, 2010, 42 (04) : 1187 - 1206
  • [3] SIR epidemics on random graphs with a fixed degree sequence
    Bohman, Tom
    Picollelli, Michael
    RANDOM STRUCTURES & ALGORITHMS, 2012, 41 (02) : 179 - 214
  • [4] EPIDEMICS ON RANDOM GRAPHS WITH TUNABLE CLUSTERING
    Britton, Tom
    Deijfen, Maria
    Lageras, Andreas N.
    Lindholm, Mathias
    JOURNAL OF APPLIED PROBABILITY, 2008, 45 (03) : 743 - 756
  • [5] THE CONTACT PROCESS ON RANDOM HYPERBOLIC GRAPHS: METASTABILITY AND CRITICAL EXPONENTS
    Linker, Amitai
    Mitsche, Dieter
    Schapira, Bruno
    Valesin, Daniel
    ANNALS OF PROBABILITY, 2021, 49 (03) : 1480 - 1514
  • [6] CONTACT PROCESSES ON RANDOM REGULAR GRAPHS
    Lalley, Steven
    Su, Wei
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (04) : 2061 - 2097
  • [7] Critical random graphs: limiting constructions and distributional properties
    Addario-Berry, L.
    Broutin, N.
    Goldschmidt, C.
    ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 : 741 - 775
  • [8] Critical behavior in inhomogeneous random graphs
    van der Hofstad, Remco
    RANDOM STRUCTURES & ALGORITHMS, 2013, 42 (04) : 480 - 508
  • [9] CRITICAL PERCOLATION ON RANDOM REGULAR GRAPHS
    Joos, Felix
    Perarnau, Guillem
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (08) : 3321 - 3332
  • [10] Interacting thermofield doubles and critical behavior in random regular graphs
    Valba, O.
    Gorsky, A.
    PHYSICAL REVIEW D, 2021, 103 (10)