Machine Learning-Driven Prediction of Wear Rate and Phase Formation in High Entropy Alloy Coatings for Enhanced Durability and Performance

被引:0
|
作者
Sivaraman, S. [1 ]
Radhika, N. [1 ]
Khan, Muhammad Abubaker [2 ]
机构
[1] Amrita Vishwa Vidyapeetham, Dept Mech Engn, Amrita Sch Engn, Coimbatore 641112, India
[2] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Coatings; Predictive models; Training; Radio frequency; Accuracy; Entropy; Data models; Boosting; Thermal spraying; Terminology; High entropy alloys; machine learning; mutual information; Pearson correlation coefficient; variance inflation factors; MICROSTRUCTURE; REGRESSION; PROPERTY; BEHAVIOR;
D O I
10.1109/ACCESS.2025.3542507
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
High Entropy Alloys (HEAs) are widely recognized for their excellent microstructure and properties, enhancing their effectiveness in surface modification through coatings techniques. These HEA coatings exhibit superior wear and corrosive resistance, making them suitable for various industries. However, accessing the wear behaviour and phase evolution of HEA coatings is complex and time-consuming due to their multiple element's nature. To address this, Machine Learning (ML) techniques were integrated to predict the wear rate and phase formation in HEA coatings processed through thermal spray methods. Ten ML models such as AdaBoost, XGBoost, CatBoost, GBRT, DT, SVM-RBF, MLP, BNN, MLR and HR were utilized to predict wear rate, Feature engineering was conducted using Mutual Information (MI) and Pearson Correlation Coefficient (PCC) to access feature significance, Variance Inflation Factors (VIFs) analyzed multicollinearity, identified influential elements for wear rate prediction and aiding in the development of novel Lightweight High Entropy Alloys (LHEAs) coating compositions. For phase prediction, four ML models including RF, GNB, ANN and Logistic regression were evaluated. Results demonstrated that XGBoost achieved the highest predictive effectiveness with an R2 of 0.98 and the lowest error values, validated against experimental data. In phase prediction, the RF model exhibited the best accuracy of 98.5% for novel LHEA coatings. These findings highlight the potential of ML techniques in facilitating material design and coating optimization.
引用
收藏
页码:33956 / 33975
页数:20
相关论文
共 50 条
  • [22] Enhanced phase prediction of high-entropy alloys through machine learning and data augmentation
    Wu, Song
    Song, Zihao
    Wang, Jianwei
    Niu, Xiaobin
    Chen, Haiyuan
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2025, 27 (02) : 717 - 729
  • [23] Prediction and design of high hardness high entropy alloy through machine learning
    Ren, Wei
    Zhang, Yi-Fan
    Wang, Wei-Li
    Ding, Shu-Jian
    Li, Nan
    MATERIALS & DESIGN, 2023, 235
  • [24] Machine learning-driven catalyst design, synthesis and performance prediction for CO2 hydrogenation
    Asif, Muhammad
    Yao, Chengxi
    Zuo, Zitu
    Bilal, Muhammad
    Zeb, Hassan
    Lee, Seungjae
    Wang, Ziyang
    Kim, Taesung
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2025, 144 : 32 - 47
  • [25] Machine learning based approach for phase prediction in high entropy borides
    Mitra, Rahul
    Bajpai, Anurag
    Biswas, Krishanu
    CERAMICS INTERNATIONAL, 2022, 48 (12) : 16695 - 16706
  • [26] Machine-learning phase prediction of high-entropy alloys
    Huang, Wenjiang
    Martin, Pedro
    Zhuang, Houlong L.
    ACTA MATERIALIA, 2019, 169 : 225 - 236
  • [27] Improving phase prediction accuracy for high entropy alloys with Machine learning
    Risal, Sandesh
    Zhu, Weihang
    Guillen, Pablo
    Sun, Li
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 192
  • [28] An investigation on the wear and corrosion resistance of AlCoCrFeNi high-entropy alloy coatings enhanced by Ti and Si
    Li, Zhen
    Mei, Kaitian
    Dong, Jianwei
    Yang, Yang
    Sun, Jiaqi
    Luo, Zhen
    SURFACE & COATINGS TECHNOLOGY, 2024, 487
  • [29] Effect of Cooling Rate on the Phase Formation of AlCoCrFeNi High-Entropy Alloy
    Sreeramagiri, Praveen
    Roy, Ankit
    Balasubramanian, Ganesh
    JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION, 2021, 42 (05) : 772 - 780
  • [30] Effect of Cooling Rate on the Phase Formation of AlCoCrFeNi High-Entropy Alloy
    Praveen Sreeramagiri
    Ankit Roy
    Ganesh Balasubramanian
    Journal of Phase Equilibria and Diffusion, 2021, 42 : 772 - 780