Improving the Convective Heat Transfer Coefficient of a New Design Helical Coiled Tube Heat Exchanger via Air Injection Technique

被引:0
|
作者
Mahood, Hameed B. [1 ,2 ]
Baqir, Ali Sh. [3 ]
Kareem, Ahmed R. [3 ]
Khadom, Anees A. [4 ]
Rashid, Khalid H. [5 ]
Campbell, Alasdair N. [6 ]
机构
[1] Univ Birmingham, Ctr Sustainable Cooling, Sch Chem Engn, Birmingham B15 2TT, England
[2] Univ Warith Al Anbiyaa, Coll Engn, Karbala, Iraq
[3] Al Furat Al Awsat Tech Univ, Engn Tech Coll, Najaf 31001, Iraq
[4] Univ Diyala, Coll Engn, Diyala 32001, Iraq
[5] Univ Technol Baghdad, Dept Chem Engn, Baghdad, Iraq
[6] Univ Sheffield, Fac Engn, Dept Chem & Biol Engn, Sheffield, England
关键词
Spiral-tube heat exchanger; Overall heat transfer coefficient; Air injection; Experimental technique; PRESSURE-DROP; BUBBLE INJECTION; NANOFLUID FLOW; TRANSFER ENHANCEMENT; THERMAL PERFORMANCE; NATURAL-CONVECTION; VERTICAL SHELL; SINGLE-PHASE; 2-PHASE FLOW; WATER;
D O I
10.1007/s13369-025-10038-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study experimentally investigates the effect of air injection on enhancing the overall heat transfer coefficient in a newly designed vertical helical coiled tube heat exchanger. Unlike conventional or uniform helical configurations, the new design increases the shell area coverage by coiled tube, significantly boosting the probability of bubble-coil interactions and enhancing disruption of the thermal boundary layer around the tube. In addition, the new coil geometry ensures that the mixing of the shell fluid due to bubble injection occurs effectively near the coil boundary, unforming the temperature in this zone, thereby reducing temperature polarisation and maximising the temperature gradient between the coil surface and surrounding fluid. To do so, initially, the heat transfer performance of the novel coil configuration was theoretically validated by comparing its heat transfer coefficient, expressed through the Nusselt number (Nu), with that of a conventional helical coil using an appropriate heat transfer correlation. The study further explored the influence of air injection, introduced as microbubbles on the shell side of the heat exchanger, across a broad spectrum of operating conditions. The microbubbles were generated using a porous sparger with an average pore size of 100 mu m. During the experiments, the temperature difference was maintained constant Delta T=20 degrees C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\Delta T = 20<^>\circ {\text{C}}} \right)$$\end{document}, while variations in shell-side Reynolds number Res=4825,7238and9650\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\text{Re}}_{s}=4825, 7238 \text{and} 9650\right)$$\end{document}, coil-side Reynolds number Rec=2600,5200,7800,10400and13000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\text{Re}}_{c}=2600, 5200, 7800, 10400 \text{and} 13000\right)$$\end{document}, and injected air Reynolds number Rea=0,2600,5200,7800,10400and13000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\text{Re}}_{a}=0, 2600, 5200, 7800, 10400 \text{and} 13000\right)$$\end{document} were systematically tested. The baseline tests, conducted without air injection, revealed that the new heat exchanger design outperformed the traditional coiled tube heat exchanger by approximately (average) 26%. Moreover, air injection substantially improved the overall heat transfer coefficient, achieving a maximum enhancement of 119% under the conditions of Rec=9650,Res=825andRea=10400\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Re}}_{c}=9650, {\text{Re}}_{s}=825 \text{and} {\text{Re}}_{a}=10400$$\end{document}. Conversely, the minimum enhancement of 41% was observed at Rec=9650,Res=275andRea=2600\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Re}}_{c}=9650, {\text{Re}}_{s}=275 \text{and} {\text{Re}}_{a}=2600$$\end{document}. The ratio of U/UNE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U/{U}_{NE}$$\end{document}, representing the overall heat transfer coefficient with air injection relative to that without air injection, reached its optimal value under these optimal operating conditions.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Comparison of heat transfer characteristics of a heat exchanger with straight helical tube and a heat exchanger with coiled flow reverser
    Kazemi-Esfe, Hossein
    Shekhari, Younes
    Omidvar, Pourya
    APPLIED THERMAL ENGINEERING, 2024, 253
  • [2] Experimental and CFD investigation of convective heat transfer in helically coiled tube heat exchanger
    Pawar, S. S.
    Sunnapwar, Vivek K.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2014, 92 (11): : 2294 - 2312
  • [3] Optimization of heat transfer and pressure drop characteristics via air bubble injection inside a shell and coiled tube heat exchanger
    Moosavi, Amin
    Abbasalizadeh, Majid
    Dizaji, Hamed Sadighi
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2016, 78 : 1 - 9
  • [4] Experimental investigation on intensified convective heat transfer coefficient of water based PANI nanofluid in vertical helical coiled heat exchanger
    Bhanvase, B. A.
    Sayankar, S. D.
    Kapre, A.
    Fule, P. J.
    Sonawane, S. H.
    APPLIED THERMAL ENGINEERING, 2018, 128 : 134 - 140
  • [5] Enhanced heat transfer and frictional losses in heat exchanger tube with modified helical coiled inserts
    Aditya Verma
    Manoj Kumar
    Anil Kumar Patil
    Heat and Mass Transfer, 2018, 54 : 3137 - 3150
  • [6] Condensation Heat Transfer of R-407C in Helical Coiled Tube Heat Exchanger
    AlHajeri, Hamad Mohammad
    Almutairi, Abdulrahman
    Al-Hajeri, Mohamad Hamad
    Alenezi, Abdulrahman
    ALajmi, Rashed
    Koluib, Aboelyazeid Mohamed
    PROCESSES, 2020, 8 (09)
  • [7] Enhanced heat transfer and frictional losses in heat exchanger tube with modified helical coiled inserts
    Verma, Aditya
    Kumar, Manoj
    Patil, Anil Kumar
    HEAT AND MASS TRANSFER, 2018, 54 (10) : 3137 - 3150
  • [8] Turbulent convective heat transfer of methane at supercritical pressure in a helical coiled tube
    Wang, Chenggang
    Sun, Baokun
    Lin, Wei
    He, Fan
    You, Yingqiang
    Yu, Jiuyang
    JOURNAL OF THERMAL SCIENCE, 2018, 27 (01) : 55 - 63
  • [9] Turbulent Convective Heat Transfer of Methane at Supercritical Pressure in a Helical Coiled Tube
    WANG Chenggang
    SUN Baokun
    LIN Wei
    HE Fan
    YOU Yingqiang
    YU Jiuyang
    Journal of Thermal Science, 2018, 27 (01) : 55 - 63
  • [10] Turbulent convective heat transfer of methane at supercritical pressure in a helical coiled tube
    Chenggang Wang
    Baokun Sun
    Wei Lin
    Fan He
    Yingqiang You
    Jiuyang Yu
    Journal of Thermal Science, 2018, 27 : 55 - 63