An in-depth review of AI-powered advancements in cancer drug discovery

被引:0
作者
Le, Minh Huu Nhat [1 ,2 ]
Nguyen, Phat Ky [1 ,2 ]
Nguyen, Thi Phuong Trang [3 ]
Nguyen, Hien Quang [4 ]
Tam, Dao Ngoc Hien [5 ]
Huynh, Han Hong [6 ]
Huynh, Phat Kim [7 ]
Le, Nguyen Quoc Khanh [2 ,8 ,9 ]
机构
[1] Taipei Med Univ, Coll Med, Int Master Ph D Program Med, Taipei, Taiwan
[2] Taipei Med Univ, AIBioMed Res Grp, Taipei 110, Taiwan
[3] HUTECH Univ, Fac Pharm, Ho Chi Minh City 700000, Vietnam
[4] Methodist Hosp, Cardiovasc Res Dept, Merrillville, IN 46410 USA
[5] Asia Shine Trading & Serv Co Ltd, Regulatory Affairs Dept, Ho Chi Minh City, Vietnam
[6] Taipei Med Univ, Coll Med Sci & Technol, Int Master Program Translat Sci, Taipei 110, Taiwan
[7] North Carolina A&T State Univ, Dept Ind & Syst Engn, Greensboro, NC 27411 USA
[8] Taipei Med Univ, Coll Med, Inserv Master Program Artificial Intelligence Med, Taipei 110, Taiwan
[9] Taipei Med Univ Hosp, Translat Imaging Res Ctr, Taipei 110, Taiwan
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE | 2025年 / 1871卷 / 03期
关键词
AI-driven drug discovery; cancer genomics; Computational drug design; Bioinformatics; Precision oncology; cancer therapeutics; PHENOME-WIDE ASSOCIATION; ARTIFICIAL-INTELLIGENCE; MOLECULAR-DYNAMICS; STRUCTURE PREDICTION; NEURAL-NETWORKS; SIPULEUCEL-T; RESISTANCE; DESIGN; TARGET; DOCKING;
D O I
10.1016/j.bbadis.2025.167680
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The convergence of artificial intelligence (AI) and genomics is redefining cancer drug discovery by facilitating the development of personalized and effective therapies. This review examines the transformative role of AI technologies, including deep learning and advanced data analytics, in accelerating key stages of the drug discovery process: target identification, drug design, clinical trial optimization, and drug response prediction. Cutting-edge tools such as DrugnomeAI and PandaOmics have made substantial contributions to therapeutic target identification, while AI's predictive capabilities are driving personalized treatment strategies. Additionally, advancements like AlphaFold highlight AI's capacity to address intricate challenges in drug development. However, the field faces significant challenges, including the management of large-scale genomic datasets and ethical concerns surrounding AI deployment in healthcare. This review underscores the promise of data-centric AI approaches and emphasizes the necessity of continued innovation and interdisciplinary collaboration. Together, AI and genomics are charting a path toward more precise, efficient, and transformative cancer therapeutics.
引用
收藏
页数:23
相关论文
共 266 条
  • [41] Massively Parallel Implementation of Steered Molecular Dynamics in Tinker-HP: Comparisons of Polarizable and Non-Polarizable Simulations of Realistic Systems
    Celerse, Frederic
    Lagardere, Louis
    Derat, Etienne
    Piquemal, Jean-Philip
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (06) : 3694 - 3709
  • [42] Design and synthesis of benzoic acid derivatives as influenza neuraminidase inhibitors using structure-based drug design
    Chand, P
    Babu, YS
    Bantia, S
    Chu, NM
    Cole, LB
    Kotian, PL
    Laver, WG
    Montgomery, JA
    Pathak, VP
    Petty, SL
    Shrout, DP
    Walsh, DA
    Walsh, GW
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 1997, 40 (25) : 4030 - 4052
  • [43] A hybrid phase I-II/III clinical trial design allowing dose re-optimization in phase III
    Chapple, Andrew G.
    Thall, Peter F.
    [J]. BIOMETRICS, 2019, 75 (02) : 371 - 381
  • [44] PROVENGE (Sipuleucel-T) in Prostate Cancer: The First FDA-Approved Therapeutic Cancer Vaccine
    Cheever, Martin A.
    Higano, Celestia S.
    [J]. CLINICAL CANCER RESEARCH, 2011, 17 (11) : 3520 - 3526
  • [45] The rise of deep learning in drug discovery
    Chen, Hongming
    Engkvist, Ola
    Wang, Yinhai
    Olivecrona, Marcus
    Blaschke, Thomas
    [J]. DRUG DISCOVERY TODAY, 2018, 23 (06) : 1241 - 1250
  • [46] Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data
    Chen, Junyi
    Wu, Zhenyu
    Qi, Ren
    Ma, Anjun
    Zhao, Jing
    Xu, Dong
    Li, Lang
    Ma, Qin
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [47] A Neoantigen-Based Peptide Vaccine for Patients With Advanced Pancreatic Cancer Refractory to Standard Treatment
    Chen, Zheling
    Zhang, Shanshan
    Han, Ning
    Jiang, Jiahong
    Xu, Yunyun
    Ma, Dongying
    Lu, Lantian
    Guo, Xiaojie
    Qiu, Min
    Huang, Qinxue
    Wang, Huimin
    Mo, Fan
    Chen, Shuqing
    Yang, Liu
    [J]. FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [48] NO ROOM FOR ERROR
    Cho, Adrian
    [J]. SCIENCE, 2020, 369 (6500) : 130 - 133
  • [49] The argument for using imatinib in CML
    Claudiani, Simone
    Apperley, Jane F.
    [J]. HEMATOLOGY-AMERICAN SOCIETY OF HEMATOLOGY EDUCATION PROGRAM, 2018, : 161 - 167
  • [50] SCScore: Synthetic Complexity Learned from a Reaction Corpus
    Coley, Connor W.
    Rogers, Luke
    Green, William H.
    Jensen, Klavs F.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (02) : 252 - 261