An in-depth review of AI-powered advancements in cancer drug discovery

被引:0
作者
Le, Minh Huu Nhat [1 ,2 ]
Nguyen, Phat Ky [1 ,2 ]
Nguyen, Thi Phuong Trang [3 ]
Nguyen, Hien Quang [4 ]
Tam, Dao Ngoc Hien [5 ]
Huynh, Han Hong [6 ]
Huynh, Phat Kim [7 ]
Le, Nguyen Quoc Khanh [2 ,8 ,9 ]
机构
[1] Taipei Med Univ, Coll Med, Int Master Ph D Program Med, Taipei, Taiwan
[2] Taipei Med Univ, AIBioMed Res Grp, Taipei 110, Taiwan
[3] HUTECH Univ, Fac Pharm, Ho Chi Minh City 700000, Vietnam
[4] Methodist Hosp, Cardiovasc Res Dept, Merrillville, IN 46410 USA
[5] Asia Shine Trading & Serv Co Ltd, Regulatory Affairs Dept, Ho Chi Minh City, Vietnam
[6] Taipei Med Univ, Coll Med Sci & Technol, Int Master Program Translat Sci, Taipei 110, Taiwan
[7] North Carolina A&T State Univ, Dept Ind & Syst Engn, Greensboro, NC 27411 USA
[8] Taipei Med Univ, Coll Med, Inserv Master Program Artificial Intelligence Med, Taipei 110, Taiwan
[9] Taipei Med Univ Hosp, Translat Imaging Res Ctr, Taipei 110, Taiwan
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE | 2025年 / 1871卷 / 03期
关键词
AI-driven drug discovery; cancer genomics; Computational drug design; Bioinformatics; Precision oncology; cancer therapeutics; PHENOME-WIDE ASSOCIATION; ARTIFICIAL-INTELLIGENCE; MOLECULAR-DYNAMICS; STRUCTURE PREDICTION; NEURAL-NETWORKS; SIPULEUCEL-T; RESISTANCE; DESIGN; TARGET; DOCKING;
D O I
10.1016/j.bbadis.2025.167680
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The convergence of artificial intelligence (AI) and genomics is redefining cancer drug discovery by facilitating the development of personalized and effective therapies. This review examines the transformative role of AI technologies, including deep learning and advanced data analytics, in accelerating key stages of the drug discovery process: target identification, drug design, clinical trial optimization, and drug response prediction. Cutting-edge tools such as DrugnomeAI and PandaOmics have made substantial contributions to therapeutic target identification, while AI's predictive capabilities are driving personalized treatment strategies. Additionally, advancements like AlphaFold highlight AI's capacity to address intricate challenges in drug development. However, the field faces significant challenges, including the management of large-scale genomic datasets and ethical concerns surrounding AI deployment in healthcare. This review underscores the promise of data-centric AI approaches and emphasizes the necessity of continued innovation and interdisciplinary collaboration. Together, AI and genomics are charting a path toward more precise, efficient, and transformative cancer therapeutics.
引用
收藏
页数:23
相关论文
共 266 条
  • [21] Artificial Intelligence in Cancer Research and Precision Medicine
    Bhinder, Bhavneet
    Gilvary, Coryandar
    Madhukar, Neel S.
    Elemento, Olivier
    [J]. CANCER DISCOVERY, 2021, 11 (04) : 900 - 915
  • [22] Role of AI and digital pathology for colorectal immuno-oncology
    Bilal, Mohsin
    Nimir, Mohammed
    Snead, David
    Taylor, Graham S.
    Rajpoot, Nasir
    [J]. BRITISH JOURNAL OF CANCER, 2023, 128 (01) : 3 - 11
  • [23] Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches
    Bin Emran, Talha
    Shahriar, Asif
    Mahmud, Aar Rafi
    Rahman, Tanjilur
    Abir, Mehedy Hasan
    Siddiquee, Mohd. Faijanur-Rob
    Ahmed, Hossain
    Rahman, Nova
    Nainu, Firzan
    Wahyudin, Elly
    Mitra, Saikat
    Dhama, Kuldeep
    Habiballah, Mahmoud M.
    Haque, Shafiul
    Islam, Ariful
    Hassan, Mohammad Mahmudul
    [J]. FRONTIERS IN ONCOLOGY, 2022, 12
  • [24] European Medicines Agency review of post-authorisation studies with implications for the European Network of Centres for Pharmacoepidemiology and Pharmacovigilance
    Blake, Kevin V.
    Prilla, Stefanie
    Accadebled, Sophie
    Guimier, Marie
    Biscaro, Monica
    Persson, Ingemar
    Arlett, Peter
    Blackburn, Stella
    Fitt, Henry
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2011, 20 (10) : 1021 - 1029
  • [25] REINVENT 2.0: An AI Tool for De Novo Drug Design
    Blaschke, Thomas
    Arus-Pous, Josep
    Chen, Hongming
    Margreitter, Christian
    Tyrchan, Christian
    Engkvist, Ola
    Papadopoulos, Kostas
    Patronov, Atanas
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (12) : 5918 - 5922
  • [26] Bioinformatic methods for cancer neoantigen prediction
    Boegel, Sebastian
    Castle, John C.
    Kodysh, Julia
    O'Donnell, Timothy
    Rubinsteyn, Alex
    [J]. CANCER IMMUNOTHERAPY, 2019, 164 : 25 - 60
  • [27] Autonomous chemical research with large language models
    Boiko, Daniil A.
    Macknight, Robert
    Kline, Ben
    Gomes, Gabe
    [J]. NATURE, 2023, 624 (7992) : 570 - +
  • [28] Artificial intelligence in early drug discovery enabling precision medicine
    Boniolo, Fabio
    Dorigatti, Emilio
    Ohnmacht, Alexander J.
    Saur, Dieter
    Schubert, Benjamin
    Menden, Michael P.
    [J]. EXPERT OPINION ON DRUG DISCOVERY, 2021, 16 (09) : 991 - 1007
  • [29] Bowers K. J., 2006, P ACM IEEE C SUP SC, DOI [DOI 10.1109/SC.2006.54, 10.1145/1188455.1188544, DOI 10.1145/1188455.1188544]
  • [30] Bozitao Zhong, 2022, HPCAsia 2022 Workshop: International Conference on High Performance Computing in Asia-Pacific Region Workshops, P1, DOI 10.1145/3503470.3503471