Enhancement of strength-ductility synergy of in situ synthesized graphene/ Ni composite via Mo microalloying

被引:1
|
作者
Liu, Ying [1 ,2 ]
Zhang, Sen [1 ]
Yao, Yupeng [1 ]
Fan, Leilei [1 ]
Wang, Jian [1 ]
Wu, Yanxia [1 ]
Jing, Lin [2 ]
Han, Peide [1 ]
Zhang, Caili [3 ]
机构
[1] Taiyuan Univ Technol, Coll Mat Sci & Engn, Taiyuan 030024, Peoples R China
[2] Southwest Jiaotong Univ, State Key Lab Tract Power, Chengdu 610031, Peoples R China
[3] Taiyuan Univ Technol, Instrumental Anal Ctr, Taiyuan 030024, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2025年 / 919卷
基金
中国国家自然科学基金;
关键词
Graphene; Nickel matrix composites; Mechanical properties; Plastic deformation; STACKING-FAULT ENERGY; MATRIX COMPOSITES; MECHANICAL-PROPERTIES; REINFORCED METAL; ANNEALING TWINS; DEFORMATION; MICROSTRUCTURE; INTERFACE; COMBINATION; EVOLUTION;
D O I
10.1016/j.msea.2024.147496
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The ideal mechanical performances of in-situ synthesized graphene/Ni composite have not been obtained due to the weak interfacial bonding. To realize the high strengthening efficiency of graphene, this paper proposed a Mo microalloying strategy. The influences of Mo concentration on the microstructures, interfacial bonding characteristics, and quasi-static tensile behavior of the composite were investigated. The results showed an appropriate Mo concentration (0.2 wt%) not only enabled a strong interfacial bonding but also reduced the stacking fault energy of the Ni matrix, generating the twinning and further altering the strength and plasticity. The yield and tensile strength of the composite were increased by 215.3 % and 20.3 %, respectively, but no significant reduction in plasticity was observed. The strengthening of the composite was ascribed to the effective load transfer, twinning, and dislocation strengthening, whereas the critical role of large-area graphene nanosheets and deformation twinning in suppressing the crack propagation ensured a high toughness.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Strength-ductility synergy of element Ru for Nb-Si based in-situ composites
    Wang, Xiaowei
    Wang, Xu
    Wang, Qi
    Chen, Ruirun
    Su, Yanqing
    Fu, Hengzhi
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 887
  • [12] Development of bimodal grain-structured Al-Zn-Mg-Cu-Zr alloys for strength-ductility synergy via microalloying with Hf and Sc
    Wu, Mingdong
    Xiao, Daihong
    Yuan, Shuo
    Tang, Sai
    Li, Zeyu
    Yin, Xiao
    Huang, Lanping
    Liu, Wensheng
    MATERIALS CHARACTERIZATION, 2023, 205
  • [13] Carbon-microalloying enhances strength-ductility synergy of (FeCoNi)90Al10 medium-entropy alloy via tailoring precipitation
    Cao, Fang
    Feng, Hao
    Huang, Yiduo
    Li, Huabing
    Wang, Xiaolan
    Zhou, Gang
    Zhang, Shucai
    Zhu, Hongchun
    Wang, Haijian
    Jiang, Zhouhua
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 916
  • [14] Enhancing strength-ductility synergy in high-Mn steel by tuning stacking fault energy via precipitation
    Cheng, Hao
    Sun, Lixin
    Li, Wentao
    Zhang, Yang
    Cui, Ye
    Chen, Dan
    Zhang, Zhongwu
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 187 : 240 - 247
  • [15] Enhancement of strength-ductility synergy in ultrafine-grained Cu-Zn alloy prepared by ECAP and subsequent annealing
    Chen, Jianqing
    Su, Yehan
    Zhang, Qiyu
    Sun, Jiapeng
    Yang, Donghui
    Jiang, Jinghua
    Song, Dan
    Ma, Aibin
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 17 : 433 - 440
  • [16] Enhanced strength-ductility synergy in a Ni-W-Co-Ta medium-heavy alloy via cryogenic supersonic fine particle bombardment
    Xiong, Yi
    Li, Hua-fei
    Li, Yong
    Zha, Xiaoqin
    Du, Xiuju
    Ren, Fengzhang
    Wang, Shubo
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 6157 - 6167
  • [17] Towards extraordinary strength-ductility synergy in pure Mg via dislocation transmutation
    He, Liuyong
    Zheng, Jiang
    Xu, Mengning
    Li, Tianjiao
    Yin, Dongdi
    Jiang, Bin
    Pan, Fusheng
    Zhou, Hao
    INTERNATIONAL JOURNAL OF PLASTICITY, 2024, 183
  • [18] Enhanced strength-ductility synergy in CuSn alloy via tuning Ti content
    Song, Dazhuo
    Zou, Juntao
    Zhang, Zhiwei
    Sun, Lixing
    Cheng, Junsheng
    Shang, Zhao
    Jiang, Yihui
    Shi, Lin
    Wang, Yuxuan
    Zhang, Yuanshu
    Song, Yuchen
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 25 : 3382 - 3394
  • [19] Enhancing strength-ductility synergy of Cu alloys with heterogeneous microstructure via rotary swaging and annealing
    Li, Xingfu
    Li, Cong
    Sun, Lele
    Gong, Yulan
    Pan, Hongjiang
    Tan, Zhilong
    Xu, Lei
    Zhu, Xinkun
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 920
  • [20] Improved Strength-Ductility Synergy of a CoCrNi Medium-Entropy Alloy by Ex Situ TiN Nanoparticles
    Wang, Anjing
    Wang, Jianying
    Yang, Feipeng
    Wen, Tao
    Yang, Hailin
    Ji, Shouxun
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (02)