CAGEN: CONTROLLABLE ANOMALY GENERATOR USING DIFFUSION MODEL

被引:0
|
作者
Jiang, Bolin [1 ]
Xie, Yuqiu [1 ]
Li, Jiawei [2 ]
Li, Naiqi [1 ]
Jiang, Yong [1 ]
Xia, Shu-Tao [1 ]
机构
[1] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Beijing, Peoples R China
[2] Huawei Mfg, Shenzhen, Peoples R China
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024 | 2024年
关键词
Anomaly detection; Data augmentation; Diffusion model;
D O I
10.1109/ICASSP48485.2024.10447663
中图分类号
学科分类号
摘要
Data augmentation has been widely applied in anomaly detection, which generates synthetic anomalous data for training. However, most existing anomaly augmentation methods focus on image-level cut-and-paste techniques, resulting in less realistic synthetic results, and are restricted to a few pre-defined patterns. In this paper, we propose our Controllable Anomaly Generator (CAGen) for anomaly data augmentation, which can generate high-quality images, and be flexibly controlled with text prompts. Specifically, our method finetunes a ControlNet model by using binary masks and textual prompts to control the spatial localization and style of generated anomalies. To further augment the resemblance between the generated features and normal samples, we propose a fusion method that integrates the generated anomalous features with the features of normal samples. Experiments on standard anomaly detection benchmarks show that the proposed data augmentation method significantly leads to a 0.4/3.1 improvement in the AUROC/AP metric.
引用
收藏
页码:3110 / 3114
页数:5
相关论文
共 50 条
  • [21] SCConv-Denoising Diffusion Probabilistic Model Anomaly Detection Based on TimesNet
    Zhou, Jingquan
    Yang, Xinhe
    Ren, Zhu
    ELECTRONICS, 2025, 14 (04):
  • [22] A Survey of Multimodal Controllable Diffusion Models
    Jiang, Rui
    Zheng, Guang-Cong
    Li, Teng
    Yang, Tian-Rui
    Wang, Jing-Dong
    Li, Xi
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2024, 39 (03) : 509 - 541
  • [23] Controlled graph neural networks with denoising diffusion for anomaly detection
    Li, Xuan
    Xiao, Chunjing
    Feng, Ziliang
    Pang, Shikang
    Tai, Wenxin
    Zhou, Fan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [24] Latent Diffusion Based Multi-class Anomaly Detection
    Wang, Chenxing
    Tavakkoli, Alireza
    ADVANCES IN VISUAL COMPUTING, ISVC 2023, PT I, 2023, 14361 : 487 - 498
  • [25] Counterfactual Data Augmentation With Denoising Diffusion for Graph Anomaly Detection
    Xiao, Chunjing
    Pang, Shikang
    Xu, Xovee
    Li, Xuan
    Trajcevski, Goce
    Zhou, Fan
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, : 1 - 13
  • [26] Image-Conditioned Diffusion Models for Medical Anomaly Detection
    Baugh, Matthew
    Reynaud, Hadrien
    Marimont, Sergio Naval
    Cechnicka, Sarah
    Mueller, Johanna P.
    Tarroni, Giacomo
    Kainz, Bernhard
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, UNSURE 2024, 2025, 15167 : 117 - 127
  • [27] Controllable fashion rendering via brownian bridge diffusion model with latent sketch encoding
    Wang, Zengmao
    Li, Jituo
    Gao, Wei
    VISUAL COMPUTER, 2025,
  • [28] Learning Diffusion Models for Multi-view Anomaly Detection
    Liu, Chieh
    Chu, Yu-Min
    Hsieh, Ting-, I
    Chen, Hwann-Tzong
    Liu, Tyng-Luh
    COMPUTER VISION - ECCV 2024, PT XXXIII, 2025, 15091 : 328 - 345
  • [29] Dynamic Anomaly Detection Using Vector Autoregressive Model
    Li, Yuemeng
    Lu, Aidong
    Wu, Xintao
    Yuan, Shuhan
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT I, 2019, 11439 : 600 - 611
  • [30] Satellite RCS anomaly detection using the GRU model
    Hu M.
    Lu W.
    Xu C.
    Lai J.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2019, 46 (06): : 125 - 130