Machine Learning-Driven Quantum Sequencing of Natural and Chemically Modified DNA

被引:0
|
作者
Maurya, Dipti [1 ]
Mittal, Sneha [1 ]
Jena, Milan Kumar [1 ]
Pathak, Biswarup [1 ]
机构
[1] Indian Inst Technol IIT Indore, Dept Chem, Indore 453552, Madhya Pradesh, India
关键词
DNA sequencing; graphene nanopore; DFT; quantum transport; machine learning; GRAPHENE; 2,6-DIAMINOPURINE; IDENTIFICATION; NUCLEOTIDES; INFORMATION; BIOLOGY; TOOL;
D O I
10.1021/acsami.4c22809
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Simultaneous identification of natural and chemically modified DNA nucleotides at molecular resolution remains a pivotal challenge in genomic science. Despite significant advances in current sequencing technologies, the ability to identify subtle changes in natural and chemically modified nucleotides is hindered by structural and configurational complexity. Given the critical role of nucleobase modifications in data storage and personalized medicine, we propose a computational approach using a graphene nanopore coupled with machine learning (ML) to simultaneously recognize both natural and chemically modified nucleotides, exploring a wide range of modifications in the nucleobase, sugar, and phosphate moieties while investigating quantum transport mechanisms to uncover distinct molecular signatures and detailed electronic and orbital insights of the nucleotides. Integrating with the best-fitted model, the graphene nanopore achieves a good classification accuracy of up to 96% for each natural, chemically modified, purine, and pyrimidine nucleotide. Our approach offers a rapid and precise solution for real-time DNA sequencing by decoding natural and chemically modified nucleotides on a single platform.
引用
收藏
页码:20778 / 20789
页数:12
相关论文
共 50 条
  • [21] Quantum Driven Machine Learning
    Saini, Shivani
    Khosla, P. K.
    Kaur, Manjit
    Singh, Gurmohan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (12) : 4013 - 4024
  • [22] Machine learning-driven process of alumina ceramics laser machining
    Behbahani, Razyeh
    Sarvestani, Hamidreza Yazdani
    Fatehi, Erfan
    Kiyani, Elham
    Ashrafi, Behnam
    Karttunen, Mikko
    Rahmat, Meysam
    PHYSICA SCRIPTA, 2023, 98 (01)
  • [23] An explainable machine learning-driven proposal of pulmonary fibrosis biomarkers
    Fanidis, Dionysios
    Pezoulas, Vasileios C.
    Fotiadis, Dimitrios, I
    Aidinis, Vassilis
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 2305 - 2315
  • [24] Machine Learning Made Easy (MLme): a comprehensive toolkit for machine learning-driven data analysis
    Akshay, Akshay
    Katoch, Mitali
    Shekarchizadeh, Navid
    Abedi, Masoud
    Sharma, Ankush
    Burkhard, Fiona C.
    Adam, Rosalyn M.
    Monastyrskaya, Katia
    Gheinani, Ali Hashemi
    GIGASCIENCE, 2024, 13
  • [25] A Layered Quality Framework for Machine Learning-driven Data and Information Models
    Azimi, Shelernaz
    Pahl, Claus
    PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS), VOL 1, 2020, : 579 - 587
  • [26] Machine Learning-Driven Virtual Bidding With Electricity Market Efficiency Analysis
    Li, Yinglun
    Yu, Nanpeng
    Wang, Wei
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (01) : 354 - 364
  • [27] Machine Learning-Driven Approach for a COVID-19 Warning System
    Hussain, Mushtaq
    Islam, Akhtarul
    Turi, Jamshid Ali
    Nabi, Said
    Hamdi, Monia
    Hamam, Habib
    Ibrahim, Muhammad
    Cifci, Mehmet Akif
    Sehar, Tayyaba
    ELECTRONICS, 2022, 11 (23)
  • [28] Machine Learning-Driven Bioelectronics for Closed-Loop Control of Cells
    Selberg, John
    Jafari, Mohammad
    Mathews, Juanita
    Jia, Manping
    Pansodtee, Pattawong
    Dechiraju, Harika
    Wu, Chunxiao
    Cordero, Sergio
    Flora, Alexander
    Yonas, Nebyu
    Jannetty, Sophia
    Diberardinis, Miranda
    Teodorescu, Mircea
    Levin, Michael
    Gomez, Marcella
    Rolandi, Marco
    ADVANCED INTELLIGENT SYSTEMS, 2020, 2 (12)
  • [29] Mandated CSR spending and Tax aggressiveness: A machine learning-driven analysis
    Bhattacharyya, Asit
    Imam, Tasadduq
    JOURNAL OF CLEANER PRODUCTION, 2024, 452
  • [30] Machine learning-driven surrogate model development for geotechnical numerical simulation
    Gao, Kunpeng
    Cheng, Zhiyuan
    Song, Yihua
    Yin, Shuhui
    Chen, Yihao
    GEOTECHNICAL RESEARCH, 2025,