A Systematic Mapping Study on State Estimation Techniques for Lithium-Ion Batteries in Electric Vehicles

被引:0
|
作者
Tripp-Barba, Carolina [1 ]
Aguilar-Calderon, Jose Alfonso [1 ]
Urquiza-Aguiar, Luis [2 ,3 ]
Zaldivar-Colado, Anibal [1 ]
Ramirez-Noriega, Alan [4 ]
机构
[1] Univ Autonoma Sinaloa, Fac Informat Mazatlan, Mazatlan 82017, Mexico
[2] Univ Amer, Fac Ingn & Ciencias Aplicadas, Carrera Ingn Software, Quito 170124, Ecuador
[3] Escuela Politec Nacl, Dept Elect Telecomunicac & Redes Informac, Quito 170525, Ecuador
[4] Univ Autonoma Sinaloa, Fac Ingn Mochis, Los Mochis 81223, Mexico
来源
WORLD ELECTRIC VEHICLE JOURNAL | 2025年 / 16卷 / 02期
关键词
electric vehicles; battery management systems; state of health; state of charge; lithium battery; remaining useful life; optimization; PEDIATRIC-PATIENTS; CHARGE ESTIMATION;
D O I
10.3390/wevj16020057
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The effective administration of lithium-ion batteries is key to the performance and durability of electric vehicles (EVs). This systematic mapping study (SMS) thoroughly examines optimization methodologies for battery management, concentrating on the estimation of state of health (SoH), remaining useful life (RUL), and state of charge (SoC). The findings disclose various methods that boost the accuracy and reliability of SoC, including enhanced variants of the Kalman filter, machine learning models like long short-term memory (LSTM) and convolutional neural networks (CNNs), as well as hybrid optimization frameworks that combine Grey Wolf Optimization (GWO) and Particle Swarm Optimization (PSO). For estimating SoH, prevalent data-driven techniques include support vector regression (SVR) and Gaussian process regression (GPR), alongside hybrid models merging machine learning with conventional estimation techniques to heighten predictive accuracy. RUL prediction sees advancements through deep learning techniques, especially LSTM and gated recurrent units (GRUs), improved using algorithms such as Harris Hawks Optimization (HHO) and Adaptive Levy Flight (ALF). This study underscores the critical role of integrating advanced filtering techniques, machine learning, and optimization algorithms in developing battery management systems (BMSs) that enhance battery reliability, extend lifespan, and optimize energy management for EVs. Moreover, innovations like hybrid models and synthetic data generation using generative adversarial networks (GANs) further augment the robustness and precision of battery management strategies. This review lays out a thorough framework for future exploration and development in the optimization of EV batteries.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] An enhanced multi-constraint state of power estimation algorithm for lithium-ion batteries in electric vehicles
    Guo, Ruohan
    Shen, Weixiang
    JOURNAL OF ENERGY STORAGE, 2022, 50
  • [32] Verification Platform of SOC Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles
    Xia, Bizhong
    Zhang, Guanyong
    Chen, Huiyuan
    Li, Yuheng
    Yu, Zhuojun
    Chen, Yunchao
    ENERGIES, 2022, 15 (09)
  • [33] A Robust State of Charge Estimation Approach Based on Nonlinear Battery Cell Model for Lithium-Ion Batteries in Electric Vehicles
    Kim, Wooyong
    Lee, Pyeong-Yeon
    Kim, Jonghoon
    Kim, Kyung-Soo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (06) : 5638 - 5647
  • [34] Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles
    Waag, Wladislaw
    Fleischer, Christian
    Sauer, Dirk Uwe
    JOURNAL OF POWER SOURCES, 2014, 258 : 321 - 339
  • [35] An On-Board Remaining Useful Life Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles
    Li, Xiaoyu
    Shu, Xing
    Shen, Jiangwei
    Xiao, Renxin
    Yan, Wensheng
    Chen, Zheng
    ENERGIES, 2017, 10 (05)
  • [36] Research on Co-Estimation Algorithm of SOC and SOH for Lithium-Ion Batteries in Electric Vehicles
    Du, Chang-Qing
    Shao, Jian-Bo
    Wu, Dong-Mei
    Ren, Zhong
    Wu, Zhong-Yi
    Ren, Wei-Qun
    ELECTRONICS, 2022, 11 (02)
  • [37] Comparative Analysis of Lithium-Ion Batteries for Urban Electric/Hybrid Electric Vehicles
    Velev, Boris
    Djudzhev, Bozhidar
    Dimitrov, Vladimir
    Hinov, Nikolay
    BATTERIES-BASEL, 2024, 10 (06):
  • [38] State of Charge estimation algorithms in Lithium-ion battery-powered Electric Vehicles
    Moussalli, Zenab
    Brahim Sedra, Moulay
    Laachir, Anass Ait
    2018 INTERNATIONAL CONFERENCE ON ELECTRONICS, CONTROL, OPTIMIZATION AND COMPUTER SCIENCE (ICECOCS), 2018,
  • [39] A bibliometric analysis of lithium-ion batteries in electric vehicles
    Chen, Shichen
    Xiong, Jiangyong
    Qiu, Yayu
    Zhao, Yan
    Chen, Sainan
    JOURNAL OF ENERGY STORAGE, 2023, 63
  • [40] Immersion Cooling of Lithium-ion Batteries for Electric Vehicles
    Williams, Niall P.
    O'Shaughnessy, Seamus M.
    2022 28TH INTERNATIONAL WORKSHOP ON THERMAL INVESTIGATIONS OF ICS AND SYSTEMS (THERMINIC 2022), 2022,