A Systematic Mapping Study on State Estimation Techniques for Lithium-Ion Batteries in Electric Vehicles

被引:0
|
作者
Tripp-Barba, Carolina [1 ]
Aguilar-Calderon, Jose Alfonso [1 ]
Urquiza-Aguiar, Luis [2 ,3 ]
Zaldivar-Colado, Anibal [1 ]
Ramirez-Noriega, Alan [4 ]
机构
[1] Univ Autonoma Sinaloa, Fac Informat Mazatlan, Mazatlan 82017, Mexico
[2] Univ Amer, Fac Ingn & Ciencias Aplicadas, Carrera Ingn Software, Quito 170124, Ecuador
[3] Escuela Politec Nacl, Dept Elect Telecomunicac & Redes Informac, Quito 170525, Ecuador
[4] Univ Autonoma Sinaloa, Fac Ingn Mochis, Los Mochis 81223, Mexico
来源
WORLD ELECTRIC VEHICLE JOURNAL | 2025年 / 16卷 / 02期
关键词
electric vehicles; battery management systems; state of health; state of charge; lithium battery; remaining useful life; optimization; PEDIATRIC-PATIENTS; CHARGE ESTIMATION;
D O I
10.3390/wevj16020057
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The effective administration of lithium-ion batteries is key to the performance and durability of electric vehicles (EVs). This systematic mapping study (SMS) thoroughly examines optimization methodologies for battery management, concentrating on the estimation of state of health (SoH), remaining useful life (RUL), and state of charge (SoC). The findings disclose various methods that boost the accuracy and reliability of SoC, including enhanced variants of the Kalman filter, machine learning models like long short-term memory (LSTM) and convolutional neural networks (CNNs), as well as hybrid optimization frameworks that combine Grey Wolf Optimization (GWO) and Particle Swarm Optimization (PSO). For estimating SoH, prevalent data-driven techniques include support vector regression (SVR) and Gaussian process regression (GPR), alongside hybrid models merging machine learning with conventional estimation techniques to heighten predictive accuracy. RUL prediction sees advancements through deep learning techniques, especially LSTM and gated recurrent units (GRUs), improved using algorithms such as Harris Hawks Optimization (HHO) and Adaptive Levy Flight (ALF). This study underscores the critical role of integrating advanced filtering techniques, machine learning, and optimization algorithms in developing battery management systems (BMSs) that enhance battery reliability, extend lifespan, and optimize energy management for EVs. Moreover, innovations like hybrid models and synthetic data generation using generative adversarial networks (GANs) further augment the robustness and precision of battery management strategies. This review lays out a thorough framework for future exploration and development in the optimization of EV batteries.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Deep Learning for State of Health Estimation of Lithium-Ion Batteries in Electric Vehicles: A Systematic Review
    Liu, Chenyuan
    Li, Heng
    Li, Kexin
    Wu, Yue
    Lv, Baogang
    ENERGIES, 2025, 18 (06)
  • [2] A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles
    Wang, Zuolu
    Feng, Guojin
    Zhen, Dong
    Gu, Fengshou
    Ball, Andrew
    ENERGY REPORTS, 2021, 7 : 5141 - 5161
  • [3] A review on rapid state of health estimation of lithium-ion batteries in electric vehicles
    Wang, Zuolu
    Zhao, Xiaoyu
    Fu, Lei
    Zhen, Dong
    Gu, Fengshou
    Ball, Andrew D.
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2023, 60
  • [4] An Improved Collaborative Estimation Method for Determining The SOC and SOH of Lithium-Ion Power Batteries for Electric Vehicles
    Liu, Yixin
    Lei, Ao
    Yu, Chunyang
    Huang, Tengfei
    Yu, Yuanbin
    ENERGIES, 2024, 17 (13)
  • [5] Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles
    Zheng, Yuejiu
    Ouyang, Minggao
    Han, Xuebing
    Lu, Languang
    Li, Jianqiu
    JOURNAL OF POWER SOURCES, 2018, 377 : 161 - 188
  • [6] A Comparative Study of State-of-Charge Estimation Algorithms for Lithium-ion Batteries in Wireless Charging Electric Vehicles
    Tian, Yong
    Li, Dong
    Tian, Jindong
    Xia, Bizhong
    IEEE PELS WORKSHOP ON EMERGING TECHNOLOGIES: WIRELESS POWER (2016 WOW), 2016, : 186 - 190
  • [7] A Systematic Framework for State of Charge, State of Health and State of Power Co-Estimation of Lithium-Ion Battery in Electric Vehicles
    Zhang, Tao
    Guo, Ningyuan
    Sun, Xiaoxia
    Fan, Jie
    Yang, Naifeng
    Song, Junjie
    Zou, Yuan
    SUSTAINABILITY, 2021, 13 (09)
  • [8] State of health estimation for lithium-ion batteries in real-world electric vehicles
    Ji Wu
    LeiChao Fang
    GuangZhong Dong
    MingQiang Lin
    Science China Technological Sciences, 2023, 66 : 47 - 56
  • [9] A Review of Critical State Joint Estimation Methods of Lithium-Ion Batteries in Electric Vehicles
    Hou, Junjian
    Li, Tong
    Zhou, Fang
    Zhao, Dengfeng
    Zhong, Yudong
    Yao, Lei
    Zeng, Li
    WORLD ELECTRIC VEHICLE JOURNAL, 2022, 13 (09):
  • [10] A comprehensive review of state of charge estimation in lithium-ion batteries used in electric vehicles
    Selvaraj, Vedhanayaki
    Vairavasundaram, Indragandhi
    JOURNAL OF ENERGY STORAGE, 2023, 72