An extensible set of parent elements to facilitate the isoparametric concept for polygons at finite strains: A scaled boundary finite element approach

被引:0
作者
Ooi, E. T. [1 ]
Sauren, B. [2 ]
Natarajan, S. [3 ]
Song, C. [4 ]
机构
[1] Federat Univ Australia, Inst Innovat Sci & Sustainabil, Ballarat, Vic 3350, Australia
[2] Rhein Westfal TH Aachen, Chair Struct Anal & Dynam, D-52074 Aachen, Germany
[3] Indian Inst Technol Madras, Dept Mech Engn, Chennai 600036, India
[4] Univ New South Wales, Sch Civil & Environm Engn, Sydney, NSW 2031, Australia
基金
澳大利亚研究理事会;
关键词
Isoparametric concept; Polygon elements; Parent elements; Scaled boundary finite element method; Finite elasticity; FORMULATION; PROPAGATION; FRACTURE;
D O I
10.1016/j.cma.2025.117803
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a generalisation of the isoparametric concept to construct finite element interpolation functions on any star-convex polygonal parametric space. The approach is based on the solution to Laplace's equation by employing the scaled boundary finite element method (SBFEM). We construct these interpolation functions for generic shapes of polygons, leading to a family of parent elements. By employing the flexibility of the SBFEM to model star- convex polygons of arbitrary number of sides, the family of parent elements can be extended straightforwardly. Similar to the standard isoparametric concept for triangles and quadrilaterals, polygonal elements in physical space are mapped to their corresponding parent element. In the preprocessing stage, each element is assigned its most affine parent element to ensure an optimal mapping. An integration scheme is developed to effectively integrate each triangular sector forming a polygon element. The novel isoparametric concept retains the use of standard procedures of the finite element method, including its ability to incorporate geometric and material nonlinearities. We demonstrate the application of the developed formulation to finite strain elasticity problems. Several numerical benchmark problems considering these aspects are used to validate the feasibility and demonstrate the advantages of the proposed method.
引用
收藏
页数:26
相关论文
共 68 条
  • [1] Study of the f0(980) and f0(500) Scalar Mesons through the Decay Ds+ → π+π-e+νe
    Ablikim, M.
    Achasov, M. N.
    Adlarson, P.
    Aliberti, R.
    Amoroso, A.
    An, M. R.
    An, Q.
    Bai, Y.
    Bakina, O.
    Balossino, I.
    Ban, Y.
    Batozskaya, V.
    Becker, D.
    Begzsuren, K.
    Berger, N.
    Bertani, M.
    Bettoni, D.
    Bianchi, F.
    Bianco, E.
    Bloms, J.
    Bortone, A.
    Boyko, I.
    Briere, R. A.
    Brueggemann, A.
    Cai, H.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Cao, N.
    Cetin, S. A.
    Chang, J. F.
    Chang, T. T.
    Chang, W. L.
    Che, G. R.
    Chelkov, G.
    Chen, C.
    Chen, Chao
    Chen, G.
    Chen, H. S.
    Chen, M. L.
    Chen, S. J.
    Chen, S. M.
    Chen, T.
    Chen, X. R.
    Chen, X. T.
    Chen, Y. B.
    Chen, Y. Q.
    Chen, Z. J.
    Cheng, W. S.
    Choi, S. K.
    [J]. PHYSICAL REVIEW LETTERS, 2024, 132 (14)
  • [2] A Nystrom-based finite element method on polygonal elements
    Anand, Akash
    Ovall, Jeffrey S.
    Weisser, Steffen
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (11) : 3971 - 3986
  • [3] An octree pattern-based massively parallel PCG solver for elasto-static and dynamic problems
    Ankit, Ankit
    Zhang, Junqi
    Eisentraeger, Sascha
    Song, Chongmin
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 404
  • [4] Bathe K.J., 1996, Finite Element Procedures
  • [5] A physically and geometrically nonlinear scaled-boundary-based finite element formulation for fracture in elastomers
    Behnke, R.
    Mundil, M.
    Birk, C.
    Kaliske, M.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 99 (13) : 966 - 999
  • [6] Bonet J, 2008, NONLINEAR CONTINUUM MECHANICS FOR FINITE ELEMENT ANALYSIS, 2ND EDITION, P1, DOI 10.1017/CBO9780511755446
  • [7] Hybrid mimetic finite-difference and virtual element formulation for coupled poromechanics
    Borio, Andrea
    Hamon, Francois P.
    Castelletto, Nicola
    White, Joshua A.
    Settgast, Randolph R.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 383
  • [8] A high-order finite element technique with automatic treatment of stress singularities by semi-analytical enrichment
    Bulling, Jannis
    Gravenkamp, Hauke
    Birk, Carolin
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 355 : 135 - 156
  • [9] A scaled boundary isogeometric formulation for the elasto-plastic analysis of solids in boundary representation
    Chasapi, M.
    Klinkel, S.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 333 : 475 - 496
  • [10] Time-domain analysis of wave propagation in 3-D unbounded domains by the scaled boundary finite element method
    Chen, Xiaojun
    Birk, Carolin
    Song, Chongmin
    [J]. SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2015, 75 : 171 - 182