3D vision object detection for autonomous driving in fog using LiDaR

被引:0
|
作者
Tahir, Alishba [1 ]
Mumtaz, Rafia [1 ]
Irshad, Muhammad Saqib [1 ]
机构
[1] Natl Univ Sci & Technol NUST, Sch Elect Engn & Comp Sci SEECS, Islamabad, Pakistan
关键词
3d object detection; 3D LiDAR sensor; Autonomous vehicle; Sparsity; Point clouds; Autonomous driving;
D O I
10.1016/j.simpat.2025.103089
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Connected and Autonomous Vehicles (CAVs) are transforming transportation. The paper describes a new method of fog simulation applied to LiDAR data for self-driving cars with a focus on enhancing 3D object detection in low visibility conditions. As opposed to the previously used methods, synthetic fog augmentation is combined with deep learning models and it is proven that the proposed method is superior to the previous methods when it comes to object detection accuracy in various fog levels. Another challenge that has been discussed in the study to ensure the reliability of autonomous navigation is the question of how the fog and the LiDAR point cloud should be modeled which eventually helps in improving the decision- making safety and operation. Fog can drastically reduce visibility and safety, making it crucial to test LiDAR-based perception algorithms for CAVs under such conditions. These simulations aim to ensure CAVs can navigate safely and efficiently through fog. However, challenges like sensor calibration and data integration need to be addressed. Despite these hurdles, the research foresees a future where CAVs, equipped with advanced LiDAR-based perception algorithms and fog-handling capabilities, enhance safety and efficiency in transportation. Notably, using synthetic fog augmentation improved detection by 5.27% for cars and 8.11% for cyclists. Furthermore, the study showcases improvements of 4.76%, 2.92%, and 3% in Mean Average Precision (mAP) across the distinct object categories of easy, moderate, and hard difficulty levels, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] 3D OBJECT DETECTION FOR AUTONOMOUS DRIVING USING TEMPORAL LIDAR DATA
    McCrae, Scott
    Zakhor, Avideh
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2661 - 2665
  • [2] LiDAR-based 3D Object Detection for Autonomous Driving
    Li, Zirui
    2022 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, COMPUTER VISION AND MACHINE LEARNING (ICICML), 2022, : 507 - 512
  • [3] 3D object detection based on image and LIDAR fusion for autonomous driving
    Chen G.
    Yi H.
    Mao Z.
    International Journal of Vehicle Information and Communication Systems, 2023, 8 (03) : 237 - 251
  • [4] Object Recognition Based Interpolation With 3D LIDAR and Vision for Autonomous Driving of an Intelligent Vehicle
    Weon, Ihn-Sik
    Lee, Soon-Geul
    Ryu, Jae-Kwan
    IEEE ACCESS, 2020, 8 : 65599 - 65608
  • [5] Influence of Camera-LiDAR Configuration on 3D Object Detection for Autonomous Driving
    Li, Ye
    Hu, Hanjiang
    Liu, Zuxin
    Xu, Xiaohao
    Huang, Xiaonan
    Zhao, Ding
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024), 2024, : 9018 - 9025
  • [6] Monocular 3D Object Detection for Autonomous Driving
    Chen, Xiaozhi
    Kundu, Kaustav
    Zhang, Ziyu
    Ma, Huimin
    Fidler, Sanja
    Urtasun, Raquel
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2147 - 2156
  • [7] 3D Object Detection for Autonomous Driving: A Survey
    Qian, Rui
    Lai, Xin
    Li, Xirong
    PATTERN RECOGNITION, 2022, 130
  • [8] Real-Time 3D Object Detection and Classification in Autonomous Driving Environment Using 3D LiDAR and Camera Sensors
    Arikumar, K. S.
    Kumar, A. Deepak
    Gadekallu, Thippa Reddy
    Prathiba, Sahaya Beni
    Tamilarasi, K.
    ELECTRONICS, 2022, 11 (24)
  • [9] TEMPORAL AXIAL ATTENTION FOR LIDAR-BASED 3D OBJECT DETECTION IN AUTONOMOUS DRIVING
    Carranza-Garcia, Manuel
    Riquelme, Jose C.
    Zakhor, Avideh
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 201 - 205
  • [10] A Survey on Deep-Learning-Based LiDAR 3D Object Detection for Autonomous Driving
    Alaba, Simegnew Yihunie
    Ball, John E.
    SENSORS, 2022, 22 (24)