Triggering probability of self-healing mechanisms in microencapsulated self-healing composites

被引:0
|
作者
Yin, Haipeng [1 ]
Li, Youtang [1 ]
Huang, Hua [1 ]
机构
[1] Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Crack; Damage management; Microcapsules; Self-healing mechanism; Mathematical model; Geometric probability; CAPSULES; DOSAGE; MODEL;
D O I
10.1016/j.apm.2025.116101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cracking is one of the critical causes of material failure, and early damage management by implanting microcapsules in the matrix is practical. Existing studies have focused on the improvement of self-healing systems and preparation technology of microcapsules', but have paid less attention to the issue of the probability of triggering the self-healing mechanism in microencapsulated self-healing composites (MSC), which in turn is a critical factor in improving the self-healing capability of the MSC. To improve the design capability of the MSC, a mathematical model affecting the intersection of a random single crack with microcapsules in a chaotic state is constructed based on the geometric probability theory. Further, the effects of a single factor on the intersection probability of a crack with microcapsules are studied. The results show that (1) the intersection mathematical probability of a randomly expanding single crack with a microcapsule is simultaneously affected by material shape, crack width, microcapsule volume fraction, and microcapsule diameter. (2) To improve the self-healing ability of the MSC, pay more attention to the mathematical expectation value of the cracks intersecting the microcapsules. (3) Under the conditions of ensuring the mechanical properties of the MSC and microcapsules, increasing the volume fraction and diameter of microcapsules can improve the self-healing efficiency of the MSC.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Development of Microencapsulated Intelligent Self-Healing Composites
    Li W.
    Li Y.
    Xin J.
    Huang H.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2023, 39 (12): : 157 - 165
  • [2] Design of Triggering Mechanisms for Self-healing Concrete:a Review
    Lyu, Leyang
    Zhang, Xiangyu
    Dong, Biqin
    Wang, Xianfeng
    Xing, Feng
    Cailiao Daobao/Materials Reports, 2024, 38 (20):
  • [3] The Potential of Microencapsulated Self-healing Materials for Microcracks Recovery in Self-healing Composite Systems: A Review
    Ullah, Hafeez
    Azizli, Khairun Azizi M.
    Man, Zakaria B.
    Ismail, Mukhtar B. Che
    Khan, Muhammad Irfan
    POLYMER REVIEWS, 2016, 56 (03) : 429 - 485
  • [4] Self-healing Polymers and Composites
    White, Scott R.
    Blaiszik, Benjamin J.
    Kramer, Sharlotte L. B.
    Olugebefola, Solar C.
    Moore, Jeffrey S.
    Sottos, Nancy R.
    AMERICAN SCIENTIST, 2011, 99 (05) : 392 - 399
  • [5] Self-Healing Polymers and Composites
    Blaiszik, B. J.
    Kramer, S. L. B.
    Olugebefola, S. C.
    Moore, J. S.
    Sottos, N. R.
    White, S. R.
    ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 40, 2010, 40 : 179 - 211
  • [6] Self-healing composites: A review
    Wang, Yongjing
    Pham, Duc Truong
    Ji, Chunqian
    COGENT ENGINEERING, 2015, 2 (01):
  • [7] Self-healing polymers and composites
    Mauldin, T. C.
    Kessler, M. R.
    INTERNATIONAL MATERIALS REVIEWS, 2010, 55 (06) : 317 - 346
  • [8] Research Development on Microencapsulated Self-Healing Concrete
    Fang G.
    Chen J.
    Wang Y.
    Zhang Y.
    Xing F.
    Dong B.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2023, 51 (09): : 2423 - 2432
  • [9] Recent Advancements in Self-Healing Metallic Materials and Self-Healing Metal Matrix Composites
    Volkan Kilicli
    Xiaojun Yan
    Nathan Salowitz
    Pradeep K. Rohatgi
    JOM, 2018, 70 : 846 - 854
  • [10] Recent Advancements in Self-Healing Metallic Materials and Self-Healing Metal Matrix Composites
    Kilicli, Volkan
    Yan, Xiaojun
    Salowitz, Nathan
    Rohatgi, Pradeep K.
    JOM, 2018, 70 (06) : 846 - 854