Pseudo-Kähler and hypersymplectic structures on semidirect products

被引:2
作者
Conti, Diego [1 ]
Gil-Garcia, Alejandro [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
[2] Beijing Inst Math Sci & Applicat BIMSA, 544 Hefangkou Village,Huaibei Town, Beijing 101408, Peoples R China
关键词
Pseudo-K & auml; hler; Hypersymplectic; Semidirect product; Ricci-flat; PSEUDO-KAHLER METRICS; COMPLEX STRUCTURES;
D O I
10.1016/j.difgeo.2024.102220
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study left-invariant pseudo-K & auml;hler and hypersymplectic structures on semidirect products G H ; we work at the level of the Lie algebra g Cj. In particular we consider the structures induced on g Cj by existing pseudo-K & auml;hler structures on g and Cj; we classify all semidirect products of this type with g of dimension 4 and Cj = R 2 . In the hypersymplectic setting, we consider a more general construction on semidirect products. We construct a large class of hypersymplectic Lie algebras whose underlying complex structure is not abelian as well as non-flat hypersymplectic metrics on k-step nilpotent Lie algebras for every k >= 3. (c) 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:34
相关论文
共 36 条
[1]   Double products and hypersymplectic structures on R4n [J].
Andrada, A ;
Dotti, IG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (01) :1-16
[2]   Classification of abelian complex structures on 6-dimensional Lie algebras [J].
Andrada, A. ;
Barberis, M. L. ;
Dotti, I. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 83 :232-255
[3]   Hypersymplectic Lie algebras [J].
Andrada, Adrian .
JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (10) :2039-2067
[4]  
AZENCOTT R, 1976, MEM AM MATH SOC, V8, pR1
[5]   Hyper-para-Kahler Lie algebras with abelian complex structures and their classification up to dimension 8 [J].
Bajo, Ignacio ;
Sanmartin, Esperanza .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 53 (04) :543-559
[6]   Pseudo-Kahler Lie algebras with Abelian complex structures [J].
Bajo, Ignacio ;
Sanmartin, Esperanza .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (46)
[7]   Symmetric and skew-symmetric complex structures [J].
Bazzoni, Giovanni ;
Gil-Garcia, Alejandro ;
Latorre, Adela .
JOURNAL OF GEOMETRY AND PHYSICS, 2021, 170
[8]   Complex symplectic structures on Lie algebras [J].
Bazzoni, Giovanni ;
Freibert, Marco ;
Latorre, Adela ;
Meinke, Benedict .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (06)
[9]  
Berard-Bergery L., 1982, NOUVELLES VARI T S R, V6, P1
[10]   NON-COMPACT EINSTEIN MANIFOLDS WITH SYMMETRY [J].
Boehm, Christoph ;
Lafuente, Ramiro A. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 36 (03) :591-651