Preparation of a 6FDA-DAM/ODA Mixed Matrix Membrane Doped with MOFs and Its Application in Gas Separation

被引:1
作者
Wang, Yi [1 ]
Li, Liang [1 ,2 ]
Zhang, Fangli [1 ,2 ]
Wang, Huajiang [1 ]
Cui, Zhaoliang [1 ,2 ,3 ]
Wang, Zhaohui [1 ,2 ,3 ]
Wang, Xiaozu [1 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Peoples R China
[2] Nanjing Tech Univ, Natl Engn Res Ctr Special Separat Membrane, Nanjing 210009, Peoples R China
[3] Nanjing Tech Univ, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, Nanjing 210009, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
mixed matrix membrane; gas separation; polyimide; UiO-66; UiO-66-NH2; MOLECULAR-SIEVES; CO2; PERFORMANCE; ADSORPTION; PROGRESS; FILLER; UIO-66;
D O I
10.1021/acsami.4c18217
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Mixed matrix membranes (MMMs) can significantly improve gas separation performance, but the type and state of the filler in the membrane matrix are key indicators for the development of MMMs. Therefore, in this work, 6FDA-DAM/ODA (1:1), metal-organic frameworks (MOFs) with different particle sizes (UiO-66 and UiO-66-NH2) were synthesized, and then MOFs were doped into 6FDA-DAM/ODA to prepare MMMs. The effects of the dopant materials and their particle sizes on the gas separation performance of the membranes were investigated by testing the permeability of the MMMs to H-2, CO2, CH4, and N-2. When the dopant material was UIO-66, the permeability and selectivity of MMMs for each gas were significantly improved compared with that of the original membrane; when the dopant material was 300 nm UIO-66-NH2 with a loading of 10 wt %, the permeability performance and the CO2/CH4 selectivity increased from 44.1 to 57.2 compared with that of the original membrane. The permeation performance for CO2, N-2, and H-2 and the selectivity for CO2/N-2, H-2/N-2, and H-2/CH4 were also significantly improved. In terms of comprehensive separation performance, doping 300 nm UiO-66-NH2 was better than doping 70 and 400 nm UiO-66-NH2 and also showed excellent performance in 50:50 (vol/vol) CO2/CH4 binary mixed gas separation. This work provides an idea for the fabrication of MMMs for high-performance gas separation.
引用
收藏
页码:9774 / 9785
页数:12
相关论文
共 47 条
[1]   Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives [J].
Ahmad, Mohd Zamidi ;
Navarro, Marta ;
Lhotka, Miloslav ;
Zornoza, Beatriz ;
Tellez, Carlos ;
de Vos, Wiebe M. ;
Benes, Nieck E. ;
Konnertz, Nora M. ;
Visser, Tymen ;
Semino, Rocio ;
Maurin, Guillaume ;
Fila, Vlastimil ;
Coronas, Joaquin .
JOURNAL OF MEMBRANE SCIENCE, 2018, 558 :64-77
[2]   ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation [J].
Anson, M ;
Marchese, J ;
Garis, E ;
Ochoa, N ;
Pagliero, C .
JOURNAL OF MEMBRANE SCIENCE, 2004, 243 (1-2) :19-28
[3]   A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst [J].
Baroutian, Saeid ;
Aroua, Mohamed K. ;
Raman, Abdul Aziz A. ;
Sulaiman, Nik M. N. .
BIORESOURCE TECHNOLOGY, 2011, 102 (02) :1095-1102
[4]   Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review [J].
Bastani, Dariush ;
Esmaeili, Nazila ;
Asadollahi, Mahdieh .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2013, 19 (02) :375-393
[5]   Membrane Gas Separation: A Review/State of the Art [J].
Bernardo, P. ;
Drioli, E. ;
Golemme, G. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (10) :4638-4663
[6]   Carbon Molecular Sieve Membrane Preparation by Economical Coating and Pyrolysis of Porous Polymer Hollow Fibers [J].
Cao, Yuhe ;
Zhang, Kuang ;
Sanyal, Oishi ;
Koros, William J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (35) :12149-12153
[7]   Zeolitic imidazolate framework materials: recent progress in synthesis and applications [J].
Chen, Binling ;
Yang, Zhuxian ;
Zhu, Yanqiu ;
Xia, Yongde .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (40) :16811-16831
[8]   Ion sieving in graphene oxide membranes via cationic control of interlayer spacing [J].
Chen, Liang ;
Shi, Guosheng ;
Shen, Jie ;
Peng, Bingquan ;
Zhang, Bowu ;
Wang, Yuzhu ;
Bian, Fenggang ;
Wang, Jiajun ;
Li, Deyuan ;
Qian, Zhe ;
Xu, Gang ;
Liu, Gongping ;
Zeng, Jianrong ;
Zhang, Lijuan ;
Yang, Yizhou ;
Zhou, Guoquan ;
Wu, Minghong ;
Jin, Wanqin ;
Li, Jingye ;
Fang, Haiping .
NATURE, 2017, 550 (7676) :415-418
[9]   Carbon Molecular Sieve Membranes Comprising Graphene Oxides and Porous Carbon for CO2/N2 Separation [J].
Chuah, Chong Yang ;
Lee, Junghyun ;
Song, Juha ;
Bae, Tae-Hyun .
MEMBRANES, 2021, 11 (04)
[10]   Gas barrier performance of graphene/polymer nanocomposites [J].
Cui, Yanbin ;
Kundalwal, S. I. ;
Kumar, S. .
CARBON, 2016, 98 :313-333