Efficient federated transfer learning-based network anomaly detection for cooperative smart farming infrastructure

被引:0
|
作者
Praharaj, Lopamudra [1 ]
Gupta, Deepti [2 ]
Gupta, Maanak [1 ]
机构
[1] Tennessee Technol Univ, Dept Comp Sci, Cookeville, TN 38505 USA
[2] Texas A&M Univ Cent Texas, Dept Comp Informat Syst, Killeen, TX USA
来源
SMART AGRICULTURAL TECHNOLOGY | 2025年 / 10卷
基金
美国国家科学基金会;
关键词
Cooperative smart farming; Federated learning; Transfer learning; Network anomaly detection; Model compression; Cyberattack; PRIVACY; FOOD; FRAMEWORK; DEMAND;
D O I
10.1016/j.atech.2024.100727
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Precision agriculture has emerged as a vital solution to meet the food demands of the growing global population. However, the high upfront costs of sensors, data analytics tools, and automation often pose challenges for smallscale farms, limiting their ability to adopt these advanced practices. Cooperative Smart Farming (CSF) provides a practical solution to address the evolving needs of modern farming, making precision agriculture more accessible and affordable for small-scale farms. These cooperatives are formal enterprises collectively financed, managed, and operated by member farms, working together for shared benefits. Though it benefits small-scale farmers, all member farms can embrace advanced technologies through collective investment and data sharing by joining cooperatives. As Smart Agriculture grows, CSFs are poised to be essential in building a more sustainable, resilient, and profitable agriculture for all member farms. However, CSFs face increased cybersecurity risks as technology reliance grows. Cyberattacks on one farm can disrupt the entire network, threatening data integrity and decision- making. Federated Learning (FL)-based anomaly detection has been proposed to address this, allowing farms to detect threats locally and share only model updates. However, cooperatives' data sharing and interconnected nature introduce challenges in developing the anomaly detection model. This model must detect threats early and take preventive actions, as delays could result in successful attacks on other smart farms in the network. Additionally, if more smart farms join the cooperative, the model gradient updates can still be transmitted to the server quickly without overwhelming communication channels and causing delays. To address these challenges, in this research, we develop an efficient Federated Transfer Learning FTL based network anomaly detection model for the CSF environment. We also use a dynamic low-rank compression algorithm to reduce the communication latency. To evaluate this proposed approach, we first set up two independent smart farming testbeds incorporating various sensors commonly used in smart farming. We then launch different cyberattacks in each smart farm and collected two network datasets. For proof of concept, we implement and assess the robustness of our proposed model based on metrics such as identifying anomalies, memory consumption, training time, and accuracy using two network datasets. The experiments demonstrated that our proposed model achieves higher accuracy and requires less training time than traditional FL algorithms, enabling early and efficient attack detection in CSF and minimizing the impact of cyberattacks on member farms.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Federated Transfer Learning Based Cross-Domain Prediction for Smart Manufacturing
    Wang, Kevin I-Kai
    Zhou, Xiaokang
    Liang, Wei
    Yan, Zheng
    She, Jinhua
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (06) : 4088 - 4096
  • [42] Transfer Learning-Based Intrusion Detection System for a Controller Area Network
    Khatri, Narayan
    Lee, Sihyung
    Nam, Seung Yeob
    IEEE ACCESS, 2023, 11 : 120963 - 120982
  • [43] Lightwave Power Transfer for Federated Learning-Based Wireless Networks
    Tran, Ha-Vu
    Kaddoum, Georges
    Elgala, Hany
    Abou-Rjeily, Chadi
    Kaushal, Hemani
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (07) : 1472 - 1476
  • [44] A data-driven metric learning-based scheme for unsupervised network anomaly detection
    Aliakbarisani, Roya
    Ghasemi, Abdorasoul
    Wu, Shyhtsun Felix
    COMPUTERS & ELECTRICAL ENGINEERING, 2019, 73 : 71 - 83
  • [45] A federated learning-based zero trust intrusion detection system for Internet of Things
    Javeed, Danish
    Saeed, Muhammad Shahid
    Adil, Muhammad
    Kumar, Prabhat
    Jolfaei, Alireza
    AD HOC NETWORKS, 2024, 162
  • [46] Give and Take: Federated Transfer Learning for Industrial IoT Network Intrusion Detection
    Rajesh, Lochana Telugu
    Das, Tapadhir
    Shukla, Raj Mani
    Sengupta, Shamik
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 2365 - 2371
  • [47] Communication-Efficient Federated Learning for Anomaly Detection in Industrial Internet of Things
    Liu, Yi
    Kumar, Neeraj
    Xiong, Zehui
    Lim, Wei Yang Bryan
    Kang, Jiawen
    Niyato, Dusit
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [48] A Federated Learning Approach for Efficient Anomaly Detection in Electric Power Steering Systems
    Kea, Kimleang
    Han, Youngsun
    Min, Young-Jae
    IEEE ACCESS, 2024, 12 : 67525 - 67536
  • [49] Optimizing WSN Network Lifetime With Federated Learning-Based Routing
    Hawkinson, Jim
    Ramesh, S. M.
    Raj, A. Sundar
    Gomathy, B.
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2025, 38 (04)
  • [50] Federated Learning-Based Cognitive Detection of Jamming Attack in Flying Ad-Hoc Network
    Mowla, Nishat, I
    Tran, Nguyen H.
    Doh, Inshil
    Chae, Kijoon
    IEEE ACCESS, 2020, 8 : 4338 - 4350