Brain-Shift: Unsupervised Pseudo-Healthy Brain Synthesis for Novel Biomarker Extraction in Chronic Subdural Hematoma

被引:0
作者
Imre, Baris [1 ]
Thibeau-Sutre, Elina [1 ]
Reimer, Jorieke [3 ]
Kho, Kuan [2 ,3 ]
Wolterink, Jelmer M. [1 ]
机构
[1] Univ Twente, Dept Appl Math, Tech Med Ctr, Enschede, Netherlands
[2] Univ Twente, Techmed Ctr, Clin Neurophysiol Grp, Enschede, Netherlands
[3] Med Spectrum Twente, Dept Neurosurg, Enschede, Netherlands
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT II | 2024年 / 15002卷
关键词
Chronic Subdural Hematoma; Diffeomorphic Image Registration; Biomarker Extraction; Unsupervised Learning; Pseudo-Healthy Brain Synthesis; MIDLINE SHIFT; HEMORRHAGE;
D O I
10.1007/978-3-031-72069-7_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Chronic subdural hematoma (cSDH) is a common neurological condition characterized by the accumulation of blood between the brain and the dura mater. This accumulation of blood can exert pressure on the brain, potentially leading to fatal outcomes. Treatment options for cSDH are limited to invasive surgery or non-invasive management. Traditionally, the midline shift, hand-measured by experts from an ideal sagittal plane, and the hematoma volume have been the primary metrics for quantifying and analyzing cSDH. However, these approaches do not quantify the local 3D brain deformation caused by cSDH. We propose a novel method using anatomy-aware unsupervised diffeomorphic pseudohealthy synthesis to generate brain deformation fields. The deformation fields derived from this process are utilized to extract biomarkers that quantify the shift in the brain due to cSDH. We use CT scans of 121 patients for training and validation of our method and find that our metrics allow the identification of patients who require surgery. Our results indicate that automatically obtained brain deformation fields might contain prognostic value for personalized cSDH treatment. Our implementation is available on: https://github.com/MIAGroupUT/Brain-Shift
引用
收藏
页码:34 / 44
页数:11
相关论文
共 29 条
  • [11] Jeffreys H., 1961, THEORY PROBABILITY, V3rd, DOI DOI 10.1063/1.3057804
  • [12] Segmentation of Chronic Subdural Hematomas Using 3D Convolutional Neural Networks
    Kellogg, Ryan T.
    Vargas, Jan
    Barros, Guilherme
    Sen, Rajeev
    Bass, David
    Mason, J. Ryan
    Levitt, Michael
    [J]. WORLD NEUROSURGERY, 2021, 148 : E58 - E65
  • [13] Kingma D.P., 2014, arXiv, DOI [DOI 10.48550/ARXIV.1412.6980, 10.48550/arXiv.1412.6980]
  • [14] Brain Midline Shift Measurement and Its Automation: A Review of Techniques and Algorithms
    Liao, Chun-Chih
    Chen, Ya-Fang
    Xiao, Furen
    [J]. INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2018, 2018
  • [15] Liu RZ, 2009, IEEE IMAGE PROC, P2637, DOI 10.1109/ICIP.2009.5414092
  • [16] Evidence based diagnosis and management of chronic subdural hematoma: A review of the literature
    Mehta, Vikram
    Harward, Stephen C.
    Sankey, Eric W.
    Nayar, Gautam
    Codd, Patrick J.
    [J]. JOURNAL OF CLINICAL NEUROSCIENCE, 2018, 50 : 7 - 15
  • [17] Radiological prognostic factors of chronic subdural hematoma recurrence: a systematic review and meta-analysis
    Miah, Ishita P.
    Tank, Yeliz
    Rosendaal, Frits R.
    Peul, Wilco C.
    Dammers, Ruben
    Lingsma, Hester F.
    den Hertog, Heleen M.
    Jellema, Korne
    van der Gaag, Niels A.
    [J]. NEURORADIOLOGY, 2021, 63 (01) : 27 - 40
  • [18] Dexamethasone versus Surgery for Chronic Subdural Hematoma
    Miah, Ishita P. P.
    Holl, Dana C. C.
    Blaauw, Jurre
    Lingsma, Hester F. F.
    den Hertog, Heleen M. M.
    Jacobs, Bram
    Kruyt, Nyika D. D.
    van der Naalt, Joukje
    Polinder, Suzanne
    Groen, Rob J. M.
    Kho, Kuan H. H.
    van Kooten, Fop
    Dirven, Clemens M. F.
    Peul, Wilco C. C.
    Jellema, Korne
    Dammers, Ruben
    van der Gaag, Niels A. A.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2023, 388 (24) : 2230 - 2240
  • [19] Quantitative analysis of brain herniation from non-contrast CT images using deep learning
    Nag, Manas Kumar
    Gupta, Akshat
    Hariharasudhan, A. S.
    Sadhu, Anup Kumar
    Das, Abir
    Ghosh, Nirmalya
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2021, 349
  • [20] Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science
    Olson, Randal S.
    Bartley, Nathan
    Urbanowicz, Ryan J.
    Moore, Jason H.
    [J]. GECCO'16: PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2016, : 485 - 492