CHARACTERIZATION OF NORM FORMS VIA THEIR VALUES AT INTEGER POINTS

被引:0
作者
Tomanov, George [1 ]
机构
[1] Univ Claude Bernard Lyon I, Inst Camille Jordan, Batiment Math,43 Bld 11 Novembre 1918, F-69622 Villeurbanne, France
关键词
Homogeneous spaces; real algebraic groups defined over the rational numbers; norm forms; values of forms at integer points; ORBITS; TORI;
D O I
10.3934/jmd.2024018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. Using a homogeneous dynamics approach, we obtain a complete description of the forms with discrete set of values at integer points and not representing zero over the rational numbers non-trivially. It turns out that these are exactly the norm forms and the quasi-norm forms (introduced in the paper). As a by-product, we obtain a general class of non-totally real forms for which a natural generalization of the conjecture of Cassels and SwinnertonDyer fails.
引用
收藏
页码:663 / 678
页数:16
相关论文
共 16 条
[1]  
Borel A., 1991, Graduate Texts in Mathematics, V126, DOI DOI 10.1007/978-1-4612-0941-6
[2]  
Borevich A.I., 1966, Number Theory
[3]  
Cassels J.W. S., 1967, Algebraic Number Theory (Proc. Instruc- tional Conf., Brighton, P42
[4]   ON THE PRODUCT OF 3 HOMOGENEOUS LINEAR FORMS AND INDEFINITE TERNARY QUADRATIC FORMS [J].
CASSELS, JWS ;
SWINNERTONDYER, HPF .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1955, 248 (940) :73-96
[5]  
Einsiedler M, 2023, Arxiv, DOI arXiv:2307.04163
[6]  
Herstein I. N., 1968, Noncommutative Rings
[7]  
MARGULIS G, 2000, MATH FRONTIERS PERSP, P161
[8]  
Margulis G.A., 1997, FIELDS MEDALLISTSLEC, V5, P272, DOI DOI 10.1142/97898123852150035
[9]  
RAGHUNATHAN MS, 1972, ERGEBNISSE MATH, V68
[10]   RAGHUNATHAN TOPOLOGICAL CONJECTURE AND DISTRIBUTIONS OF UNIPOTENT FLOWS [J].
RATNER, M .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (01) :235-280