On the Privacy Issue of Evolutionary Biparty Multiobjective Optimization

被引:2
|
作者
She, Zeneng [1 ]
Luo, Wenjian [1 ,2 ]
Chang, Yatong [1 ]
Song, Zhen [1 ]
Shi, Yuhui [3 ]
机构
[1] Harbin Inst Technol, Guangdong Prov Key Lab Novel Intelligence Technol, Sch Comp Sci & Technol, Shenzhen 518055, Guangdong, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518055, Guangdong, Peoples R China
[3] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
来源
ADVANCES IN SWARM INTELLIGENCE, ICSI 2023, PT I | 2023年 / 13968卷
基金
国家重点研发计划;
关键词
Multiobjective optimization; Biparty multiobjective optimization; Evolutionary computation; Privacy; ALGORITHMS;
D O I
10.1007/978-3-031-36622-2_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Some evolutionary algorithms have been proposed to address biparty multiobjective optimization problems (BPMOPs). However, all these algorithms are centralized algorithms which directly obtain the privacy information including objective functions from decision makers (DMs). This paper transforms the centralized algorithm OptMPNDS2 into a distributed framework for BPMOPs and focuses on the privacy issue in the framework. The framework has a server and two clients, and each client belongs to a DM. The clients keep their objective functions locally, evaluate individuals, and upload Pareto levels and crowding distances of all individuals to the server. The server performs the other operations including reproduction and selection of offspring. Experimental results show that the performance of the framework is very close to OptMPNDS2. Besides, two privacy attacks are proposed when one client is malicious. Experimental results show that the client could steal approximate Pareto optimal solutions of the other honest DM.
引用
收藏
页码:371 / 382
页数:12
相关论文
共 50 条
  • [31] Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs)
    He, Cheng
    Huang, Shihua
    Cheng, Ran
    Tan, Kay Chen
    Jin, Yaochu
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (06) : 3129 - 3142
  • [32] Initialization Procedures for Multiobjective Evolutionary Approaches to the Segmentation Issue
    Guerrero, Jose L.
    Berlanga, Antonio
    Manuel Molina, Jose
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT I, 2012, 7208 : 452 - 463
  • [33] A multiobjective evolutionary algorithm toolbox for computer-aided multiobjective optimization
    Tan, KC
    Lee, TH
    Khoo, D
    Khor, EF
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2001, 31 (04): : 537 - 556
  • [34] Evolutionary multiobjective optimization in noisy problem environments
    Hamidreza Eskandari
    Christopher D. Geiger
    Journal of Heuristics, 2009, 15 : 559 - 595
  • [35] A Survey on the Hypervolume Indicator in Evolutionary Multiobjective Optimization
    Shang, Ke
    Ishibuchi, Hisao
    He, Linjun
    Pang, Lie Meng
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (01) : 1 - 20
  • [36] Evolutionary multiobjective optimization in noisy problem environments
    Eskandari, Hamidreza
    Geiger, Christopher D.
    JOURNAL OF HEURISTICS, 2009, 15 (06) : 559 - 595
  • [37] Surrogate Model Selection for Evolutionary Multiobjective Optimization
    Pilat, Martin
    Neruda, Roman
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 1860 - 1867
  • [38] GECCO 2012 Tutorial on Evolutionary Multiobjective Optimization
    Brockhoff, Dimo
    Deb, Kalyanmoy
    PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION COMPANION (GECCO'12), 2012, : 751 - 776
  • [39] Antimicrobial Peptides Design by Evolutionary Multiobjective Optimization
    Maccari, Giuseppe
    Di Luca, Mariagrazia
    Nifosi, Riccardo
    Cardarelli, Francesco
    Signore, Giovanni
    Boccardi, Claudia
    Bifone, Angelo
    PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (09)
  • [40] Evolutionary multiobjective optimization using a cultural algorithm
    Coello, CAC
    Becerra, RL
    PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM (SIS 03), 2003, : 6 - 13