Translated object identification for efficient ghost imaging

被引:2
作者
Ruget, Alice [1 ]
Moodley, Chane [2 ,3 ]
Forbes, Andrew [2 ]
Leach, Jonathan [1 ]
机构
[1] Heriot Watt Univ, Inst Photon & Quantum Sci, David Brewster Bldg, Edinburgh EH14 4AS, Scotland
[2] Univ Witwatersrand, Sch Phys, Struct Light Lab, ZA-2050 Johannesburg, South Africa
[3] QLab, Waterfall, ZA-1682 Midrand, South Africa
基金
英国工程与自然科学研究理事会;
关键词
Object detection;
D O I
10.1364/OE.533343
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Alignment of a single-pixel quantum ghost imaging setup is complex and requires extreme precision. Due to misalignment, easily created by human error in the alignment process, reconstructed images are often translated off the central imaging axis. This becomes problematic for intelligent object detection and identification in fast imaging cases, as these algorithms are unable to achieve early image identification. Here, we implemented a U-net algorithm to correctly recognize images in the early reconstruction stage regardless of any off-axis translation. The U-net was trained on a uniquely curated blurred, noised, and off-axis translated dataset. We achieved a 5x reduction in imaging speeds by early image identification in four different translation directions.
引用
收藏
页码:41057 / 41068
页数:12
相关论文
共 50 条
[31]   Learning Efficient Binarized Object Detectors With Information Compression [J].
Wang, Ziwei ;
Lu, Jiwen ;
Wu, Ziyi ;
Zhou, Jie .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (06) :3082-3095
[32]   How efficient deep-learning object detectors are? [J].
Miguel Soria, Luis ;
Ortega, Francisco J. ;
Alvarez-Garcia, Juan A. ;
Velasco, Francisco ;
Fernandez-Cerero, Damian .
NEUROCOMPUTING, 2020, 385 :231-257
[33]   An Efficient Object Detection Algorithm Based on Compressed Networks [J].
Li, Jianjun ;
Peng, Kangjian ;
Chang, Chin-Chen .
SYMMETRY-BASEL, 2018, 10 (07)
[34]   Attentional and adversarial feature mimic for efficient object detection [J].
Wang, Hongxing ;
Chen, Yuquan ;
Wu, Mei ;
Zhang, Xin ;
Huang, Zheng ;
Mao, Weiping .
VISUAL COMPUTER, 2023, 39 (02) :639-650
[35]   Classification Weight Imprinting for Data Efficient Object Detection [J].
Li, Yiting ;
Zhu, Haiyue ;
Ma, Jun ;
Tian, Sichao ;
Teo, Chek Sing ;
Xiang, Cheng ;
Vadakkepat, Prahlad ;
Lee, Tong Heng .
PROCEEDINGS OF 2021 IEEE 30TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2021,
[36]   Toward Efficient Detection and Tracking for Tiny Airborne Object [J].
Liu, Zhunga ;
Lyu, Yanyi ;
Guo, Dongxiu ;
Li, Huandong ;
Fu, Yimin .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2025, 61 (02) :4891-4906
[37]   Multimodal PointPillars for Efficient Object Detection in Autonomous Vehicles [J].
Oliveira M. ;
Cerqueira R. ;
Pinto J.R. ;
Fonseca J. ;
Teixeira L.F. .
IEEE Transactions on Intelligent Vehicles, 2025, 10 (01) :81-91
[38]   Modified YOLO Module for Efficient Object Tracking in a Video [J].
Deshpande, Varsha Kshirsagar ;
Bhalerao, Raghavendra Hemant ;
Chaturvedi, Manish .
IEEE LATIN AMERICA TRANSACTIONS, 2023, 21 (03) :389-398
[39]   Fusion of local and global features for efficient object detection [J].
Le, DD ;
Satoh, S .
APPLICATIONS OF NEURAL NETWORKS AND MACHINE LEARNING IN IMAGE PROCESSING IX, 2005, 5673 :106-116
[40]   An efficient model for small object detection in the maritime environment [J].
Shao, Zeyuan ;
Yin, Yong ;
Lyu, Hongguang ;
Soares, C. Guedes ;
Cheng, Tao ;
Jing, Qianfeng ;
Yang, Zhilin .
APPLIED OCEAN RESEARCH, 2024, 152