Global stability and Hopf bifurcation of delayed fractional-order complex-valued BAM neural network with an arbitrary number of neurons

被引:1
|
作者
Javidmanesh, Elham [1 ]
Bahabadi, Alireza Zamani [2 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Appl Math, Mashhad, Iran
[2] Ferdowsi Univ Mashhad, Dept Pure Math, Mashhad, Iran
来源
JOURNAL OF MATHEMATICAL MODELING | 2023年 / 11卷 / 01期
关键词
neural network; fractional ordinary differential equations; Hopf bifurcation; time delay; Lyapunov function; global stability;
D O I
10.22124/JMM.2022.22299.1972
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a general class of fractional-order complex-valued bidirectional associative memory neural network with time delay is considered. This neural network model contains an arbitrary number of neurons, i.e. one neuron in the X-layer and other neurons in the Y-layer. Hopf bifurcation analysis of this system will be discussed. Here, the number of neurons, i.e., n can be chosen arbitrarily. We study Hopf bifurcation by taking the time delay as the bifurcation parameter. The critical value of the time delay for the occurrence of Hopf bifurcation is determined. Moreover, we find two kinds of appropriate Lyapunov functions that under some sufficient conditions, global stability of the system is obtained. Finally, numerical examples are also presented.
引用
收藏
页码:19 / 34
页数:16
相关论文
共 50 条
  • [1] Stability and Hopf Bifurcation of Fractional-Order Complex-Valued Neural Networks With Time-Delay
    Wang, Xiaohong
    Wang, Zhen
    Zhu, Xianggeng
    Meng, Bo
    Xia, Jianwei
    IEEE ACCESS, 2019, 7 : 158798 - 158807
  • [2] Stability and Hopf bifurcation analysis of fractional-order complex-valued neural networks with time delays
    R Rakkiyappan
    K Udhayakumar
    G Velmurugan
    Jinde Cao
    Ahmed Alsaedi
    Advances in Difference Equations, 2017
  • [3] Stability and Hopf bifurcation analysis of fractional-order complex-valued neural networks with time delays
    Rakkiyappan, R.
    Udhayakumar, K.
    Velmurugan, G.
    Cao, Jinde
    Alsaedi, Ahmed
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [4] Stability and hopf bifurcation of fractional complex-valued BAM neural networks with multiple time delays
    Hou, Hu-Shuang
    Zhang, Hua
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 450
  • [5] Stability and Hopf Bifurcation of Fractional-Order Complex-Valued Single Neuron Model with Time Delay
    Wang, Zhen
    Wang, Xiaohong
    Li, Yuxia
    Huang, Xia
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (13):
  • [6] Synchronization in Fractional-Order Complex-Valued Delayed Neural Networks
    Zhang, Weiwei
    Cao, Jinde
    Chen, Dingyuan
    Alsaadi, Fuad E.
    ENTROPY, 2018, 20 (01)
  • [7] Global stability analysis for delayed complex-valued BAM neural networks
    Wang, Zengyun
    Huang, Lihong
    NEUROCOMPUTING, 2016, 173 : 2083 - 2089
  • [8] Novel results on bifurcation for a fractional-order complex-valued neural network with leakage delay
    Yuan, Jun
    Zhao, Lingzhi
    Huang, Chengdai
    Xiao, Min
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 514 : 868 - 883
  • [9] Global asymptotic stability of delayed fractional-order complex-valued fuzzy cellular neural networks with impulsive disturbances
    R. Vijay Aravind
    P. Balasubramaniam
    Journal of Applied Mathematics and Computing, 2022, 68 : 4713 - 4731
  • [10] Global asymptotic stability of delayed fractional-order complex-valued fuzzy cellular neural networks with impulsive disturbances
    Aravind, R. Vijay
    Balasubramaniam, P.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (06) : 4713 - 4731