Investigating Mild Solution and Optimal Control Results for Fractional-Order Semilinear Control System via Resolvent Operators

被引:0
|
作者
Khanam, Shifa [1 ]
Goyal, Swati [2 ]
Patel, Rohit [3 ]
Ruchi [1 ]
机构
[1] KGK PG Coll, Dept Math, Moradabad, India
[2] Bhagwan Parshuram Inst Technol, Dept Appl Sci, New Delhi, India
[3] Govt PG Coll Bisalpur, Dept Math, Pilibhit, India
关键词
Fixed Point Theorem; Hilbert Schmidt operator; mild solution; optimal control; resolvent operators; Stochastic Process; VOLTERRA INTEGRODIFFERENTIAL EQUATIONS; EXISTENCE;
D O I
10.1002/oca.3276
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the existence of mild solutions and the derivation of optimal control results for a fractional integro-differential control system using resolvent operators and advanced operator theory. By employing mathematical tools such as the Banach Fixed Point Theorem, Gronwall's Inequality, and semigroup theory, the study addresses semilinear control systems governed by resolvent operators in the context of fractional-order dynamics. The paper establishes sufficient conditions for the existence and uniqueness of mild solutions under Lipschitz-type non-linearity and provides a framework for the analysis of optimal control strategies using minimizing sequences. Additionally, the work delves into the study of time-optimal control and time-dependent systems by defining appropriate transition times and controls within infinite-dimensional spaces. The contributions highlight the application of resolvent operators in complex dynamical systems, demonstrating the practical relevance of the derived results in engineering, biological models, and other scientific fields. Furthermore, the theoretical results are supplemented by examples that illustrate the applicability and significance of the findings in real-world control systems. This research not only extends the understanding of fractional-order systems but also provides a foundation for future studies on more complex non-linearities and control settings.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Optimal control of a fractional-order monkeypox epidemic model with vaccination and rodents culling
    Musafir, Raqqasyi R.
    Suryanto, Agus
    Darti, Isnani
    Trisilowati
    RESULTS IN CONTROL AND OPTIMIZATION, 2024, 14
  • [32] Optimal control problems with a fixed terminal time in linear fractional-order systems
    Gomoyunov, M., I
    ARCHIVES OF CONTROL SCIENCES, 2020, 30 (04) : 721 - 744
  • [33] Stability analysis and optimal control of a fractional-order model for African swine fever
    Shi, Ruiqing
    Li, Yang
    Wang, Cuihong
    VIRUS RESEARCH, 2020, 288
  • [34] Existence of solution and optimal control results in coupled wave system with Lipschitz nonlinearity
    Kumar, Sandeep
    Tajinder
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2025, 13 (01)
  • [35] OPTIMAL CONTROL OF THE DISCRETE-TIME FRACTIONAL-ORDER CUCKER SMALE MODEL
    Malinowska, Agnieszka B.
    Odzijewicz, Tatiana
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (01): : 347 - 357
  • [36] Results on exact controllability of second-order semilinear control system in Hilbert spaces
    Arora, Urvashi
    Vijayakumar, V.
    Shukla, Anurag
    Nisar, Kottakkaran Sooppy
    Rezapour, Shahram
    Jamshed, Wasim
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [37] Adaptive Neural Optimal Backstepping Control of Uncertain Fractional-Order Chaotic Circuit Systems via Reinforcement Learning
    Zhong, Mei
    Huang, Chengdai
    Cao, Jinde
    Liu, Heng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2024, 71 (10) : 4707 - 4720
  • [38] Optimal Control Results for Sobolev-Type Fractional Stochastic Volterra-Fredholm Integrodifferential Systems of Order V?(1,2) via Sectorial Operators
    Johnson, M.
    Vijayakumar, V.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (06) : 439 - 460
  • [39] A note on the approximate controllability of second-order integro-differential evolution control systems via resolvent operators
    Vijayakumar, Velusamy
    Shukla, Anurag
    Nisar, Kottakkaran Sooppy
    Jamshed, Wasim
    Rezapour, Shahram
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [40] Presentation of the model and optimal control of non-linear fractional-order chaotic system of glucose-insulin
    Mohammadi, Shaban
    Hejazi, S. Reza
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2024, 27 (07) : 836 - 848