Fire-retardant and thermally conductive polyacrylonitrile-based separators enabling the safety of lithium-ion batteries

被引:12
作者
Bai, Wei [1 ]
Xiao, Lei [1 ]
Long, Tao [1 ]
Wang, Zhirong [1 ]
Wang, Junling [1 ,2 ]
Richard, Yuen Kwok Kit [2 ]
Lu, Yawei [3 ]
机构
[1] Nanjing Tech Univ, Coll Safety Sci & Engn, Jiangsu Key Lab Hazardous Chem Safety & Control, Nanjing 211816, Peoples R China
[2] City Univ Hong Kong, Dept Architecture & Civil Engn, Kowloon, Tat Chee Ave, Hong Kong 999077, Peoples R China
[3] Nanjing Tech Univ, Coll Emergency Management, Nanjing 211816, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Flame retardant; Separator; Thermal safety; BORON-NITRIDE NANOMATERIALS; POLYETHYLENE SEPARATORS; POLYMER ELECTROLYTES; COMPOSITE; CONSTRUCTION; PERFORMANCE; NANOSHEET; NANOTUBES; MEMBRANE; RUNAWAY;
D O I
10.1016/j.jcis.2024.12.229
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-ion batteries (LIBs) have broad application prospects in many fields because of their high energy density. However, the poor heat resistance of polyolefin membranes and uneven lithium deposition result in battery failure and even infamous thermal runaway behavior. To improve the intrinsic safety of batteries, fire-retardant, thermally conductive, electrospinning strategies are employed to acquire a functional polyacrylonitrile (PAN) nanofiber separator (PAN@FBN/TPP) containing modified boron nitride (FBN) and triphenyl phosphate (TPP). Compared with those of the Celgard separator, the porosity, contact angle, and electrolyte uptake of the Celgard separator are greatly improved. Moreover, the designed separator shows excellent thermal stability without shrinkage when heated at 220 degrees C. The char residue at 800 degrees C is 43.7 wt%, which is much greater than that of the Celgard separator (similar to 0.26 wt%). The maximal peak heat release rate (PHRRmax) is only 30 % that of the Celgard separator. The improvement in heat resistance laid a solid foundation for the preparation of high-safety LIBs. The advantages of a uniform pore size distribution and extremely high porosity provide abundant active sites and convenient channels for Li+ migration. The cell with the PAN@FBN/TPP separator shows excellent cycle stability and rate performance. Owing to the high heat resistance of PAN and the excellent flame-retardant capability of FBN, the LIBs presented the highest self-heating temperature (T-0) and thermal runaway temperature (T-1) and the smallest maximum temperature (T-max) and heat release rate (HRRmax) in the safety performance test; compared with those of commercial separator batteries, the above thermal safety parameters increased by 16.9 %, 6.5 %, 21.8 % and 81.5 %, respectively. Overall, this work may provide an effective way to fabricate LIBs with high thermal safety.
引用
收藏
页码:377 / 387
页数:11
相关论文
共 74 条
[31]   Electrochemical performance and thermal stability of the electrospun PTFE nanofiber separator for lithium-ion batteries [J].
Li, Jingde ;
Zhong, Qin ;
Yao, Yongyi ;
Bi, Songhu ;
Zhou, Tao ;
Guo, XiaoMing ;
Wu, Mengqiang ;
Feng, Tingting ;
Xiang, Ruili .
JOURNAL OF APPLIED POLYMER SCIENCE, 2018, 135 (29)
[32]   High-safety poly(ethylene-co-vinyl acetate)/poly(ether ether ketone)/poly (ethylene-co-vinyl acetate) composite separator with the thermal shutdown feature for lithium-ion battery [J].
Li, Longhui ;
Zhou, Mengyuan ;
Xiong, Ruoyu ;
Wang, Xuyang ;
Shen, Guancheng ;
Sun, Shuang ;
Chen, Yifu ;
Huang, Tianlun ;
Zhou, Huamin ;
Zhang, Yun .
JOURNAL OF MEMBRANE SCIENCE, 2023, 687
[33]   Strong Oxidation Resistance of Atomically Thin Boron Nitride Nanosheets [J].
Li, Lu Hua ;
Cervenka, Jiri ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Chen, Ying .
ACS NANO, 2014, 8 (02) :1457-1462
[34]   Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials [J].
Li, Yan ;
Liu, Xiang ;
Wang, Li ;
Feng, Xuning ;
Ren, Dongsheng ;
Wu, Yu ;
Xu, Guiliang ;
Lu, Languang ;
Hou, Junxian ;
Zhang, Weifeng ;
Wang, Yongling ;
Xu, Wenqian ;
Ren, Yang ;
Wang, Zaifa ;
Huang, Jianyu ;
Meng, Xiangfeng ;
Han, Xuebing ;
Wang, Hewu ;
He, Xiangming ;
Chen, Zonghai ;
Amine, Khalil ;
Ouyang, Minggao .
NANO ENERGY, 2021, 85 (85)
[35]   Microcapsule Modification Strategy Empowering Separator Multifunctionality to Enhance Safety of Lithium-Metal Batteries [J].
Liao, Can ;
Li, Wanqing ;
Han, Longfei ;
Chu, Fukai ;
Zou, Bin ;
Qiu, Shuilai ;
Kan, Yongchun ;
Song, Lei ;
Yan, Wei ;
He, Xiangming ;
Hu, Yuan ;
Zhang, Jiujun .
SMALL, 2024, 20 (43)
[36]   Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene [J].
Lin, Yi ;
Connell, John W. .
NANOSCALE, 2012, 4 (22) :6908-6939
[37]   Si3N4 slurry with high solid phase, low viscosity prepared via surface-oxidation and silane coupling agent modification hybrid method [J].
Liu, Shuangyu ;
Chen, Yingjie ;
Lu, Ping ;
Wang, Binhua ;
Zhang, Fulong ;
Hong, Juan .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (01) :161-172
[38]   Poly(ether ether ketone) Conferred Polyolefin Separators with High Dimensional Thermal Stability for Lithium-Ion Batteries [J].
Liu, Yuhan ;
Zhang, Zijian ;
Du, Xinwei ;
Wang, Yuliang ;
Guo, Xiaohui ;
Yu, Mengxuan ;
Liu, Baijun ;
Hu, Wei ;
Shen, Li ;
Lu, Yunfeng ;
Zhu, Guangshan .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (31) :37354-37360
[39]  
Lu H., 2024, Energ. Environ. Sci.
[40]   Thermally stable 3D cross-linked fluorinated polyimide/PVDF-HFP hybrid separator for lithium battery applications [J].
Muche, Zabish Bilew ;
Nikodimos, Yosef ;
Tekaligne, Teshager Mekonnen ;
Merso, Semaw Kebede ;
Agnihotri, Tripti ;
Serbessa, Gashahun Gobena ;
Wu, She-Huang ;
Su, Wei-Nien ;
Hwang, Bing Joe .
CHEMICAL ENGINEERING JOURNAL, 2023, 476