Rice Yield Prediction Using Spectral and Textural Indices Derived from UAV Imagery and Machine Learning Models in Lambayeque, Peru

被引:0
作者
Quille-Mamani, Javier [1 ]
Ramos-Fernandez, Lia [2 ]
Huanuqueno-Murillo, Jose [2 ]
Quispe-Tito, David [2 ]
Cruz-Villacorta, Lena [3 ,4 ]
Pino-Vargas, Edwin [5 ]
Flores del Pino, Lisveth [6 ]
Heros-Aguilar, Elizabeth [7 ]
Ruiz, Luis Angel [1 ]
机构
[1] Univ Politecn Valencia, Geoenvironm Cartog & Remote Sensing Grp CGAT, Cami Vera S-N, Valencia 46022, Spain
[2] Natl Agrarian Univ La Molina, Dept Water Resources, Lima 15024, Peru
[3] Univ Nacl Agr Molina, Dept Terr Planning, Lima 15024, Peru
[4] Univ Nacl Agr Molina, Doctoral Program Engn & Environm Sci, Lima 15024, Peru
[5] Jorge Basadre Grohmann Natl Univ, Dept Civil Engn, Tacna 23000, Peru
[6] Natl Agrarian Univ Molina, Ctr Res Chem Toxicol & Environm Biotechnol, Lima 15024, Peru
[7] Natl Agrarian Univ La Molina, Dept Phytotechn, Lima 15024, Peru
关键词
vegetation indices (VIs); textural indices (TIs); multiple linear regression (MLR); support vector regression (SVR); random forest (RF); cross-validation; machine learning; ABOVEGROUND BIOMASS;
D O I
10.3390/rs17040632
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Predicting rice yield accurately is crucial for enhancing farming practices and securing food supplies. This research aims to estimate rice yield in Peru's Lambayeque region by utilizing spectral and textural indices derived from unmanned aerial vehicle (UAV) imagery, which offers a cost-effective alternative to traditional approaches. UAV data collection in commercial areas involved seven flights in 2022 and ten in 2023, focusing on key growth stages such as flowering, milk, and dough, each showing significant predictive capability. Vegetation indices like NDVI, SP, DVI, NDRE, GNDVI, and EVI2, along with textural features from the gray-level co-occurrence matrix (GLCM) such as ENE, ENT, COR, IDM, CON, SA, and VAR, were combined to form a comprehensive dataset for model training. Among the machine learning models tested, including Multiple Linear Regression (MLR), Support Vector Machines (SVR), and Random Forest (RF), MLR demonstrated high reliability for annual data with an R2 of 0.69 during the flowering and milk stages, and an R2 of 0.78 for the dough stage in 2022. The RF model excelled in the combined analysis of 2022-2023 data, achieving an R2 of 0.58 for the dough stage, all confirmed through cross-validation. Integrating spectral and textural data from UAV imagery enhances early yield prediction, aiding precision agriculture and informed decision-making in rice management. These results emphasize the need to incorporate climate variables to refine predictions under diverse environmental conditions, offering a scalable solution to improve agricultural management and market planning.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Peanut yield prediction with UAV multispectral imagery using a cooperative machine learning approach
    Shahi, Tej Bahadur
    Xu, Cheng-Yuan
    Neupane, Arjun
    Fleischfresser, Dayle B.
    O'Connor, Daniel J.
    Wright, Graeme C.
    Guo, William
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (06): : 3343 - 3361
  • [2] SCALE-AWARE POMEGRANATE YIELD PREDICTION USING UAV IMAGERY AND MACHINE LEARNING
    Niu, Haoyu
    Wang, Dong
    Ehsani, Reza
    Chen, Yangquan
    JOURNAL OF THE ASABE, 2023, 66 (05): : 1331 - 1340
  • [3] Predicting canopy chlorophyll concentration in citronella crop using machine learning algorithms and spectral vegetation indices derived from UAV multispectral imagery
    Khan, Mohammad Saleem
    Yadav, Priya
    Semwal, Manoj
    Prasad, Nupoor
    Verma, Rajesh Kumar
    Kumar, Dipender
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 219
  • [4] Predicting Canopy Chlorophyll Content in Sugarcane Crops Using Machine Learning Algorithms and Spectral Vegetation Indices Derived from UAV Multispectral Imagery
    Narmilan, Amarasingam
    Gonzalez, Felipe
    Salgadoe, Arachchige Surantha Ashan
    Kumarasiri, Unupen Widanelage Lahiru Madhushanka
    Weerasinghe, Hettiarachchige Asiri Sampageeth
    Kulasekara, Buddhika Rasanjana
    REMOTE SENSING, 2022, 14 (05)
  • [5] Plant-level prediction of potato yield using machine learning and unmanned aerial vehicle (UAV) multispectral imagery
    Tatsumi, Kenichi
    Usami, Tamano
    DISCOVER APPLIED SCIENCES, 2024, 6 (12)
  • [6] Garlic yield monitoring using vegetation indices and texture features derived from UAV multispectral imagery
    Marcone, Andrea
    Impollonia, Giorgio
    Croci, Michele
    Blandinieres, Henri
    Pellegrini, Niccolo
    Amaducci, Stefano
    SMART AGRICULTURAL TECHNOLOGY, 2024, 8
  • [7] Estimation of eggplant yield with machine learning methods using spectral vegetation indices
    Tasan, Sevda
    Cemek, Bilal
    Tasan, Mehmet
    Canturk, Aslihan
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 202
  • [8] Prediction of Field-Scale Wheat Yield Using Machine Learning Method and Multi-Spectral UAV Data
    Bian, Chaofa
    Shi, Hongtao
    Wu, Suqin
    Zhang, Kefei
    Wei, Meng
    Zhao, Yindi
    Sun, Yaqin
    Zhuang, Huifu
    Zhang, Xuewei
    Chen, Shuo
    REMOTE SENSING, 2022, 14 (06)
  • [9] Understanding Growth Dynamics and Yield Prediction of Sorghum Using High Temporal Resolution UAV Imagery Time Series and Machine Learning
    Varela, Sebastian
    Pederson, Taylor
    Bernacchi, Carl J.
    Leakey, Andrew D. B.
    REMOTE SENSING, 2021, 13 (09)
  • [10] Precision assessment of rice grain moisture content using UAV multispectral imagery and machine learning
    Yang, Ming-Der
    Hsu, Yu-Chun
    Tseng, Wei-Cheng
    Tseng, Hsin-Hung
    Lai, Ming-Hsin
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2025, 230