Unravelling Antimicrobial Resistance in Mycoplasma hyopneumoniae: Genetic Mechanisms and Future Directions

被引:0
|
作者
Jafari Jozani, Raziallah [1 ]
Al Khallawi, Mauida F. Hasoon [1 ]
Trott, Darren [1 ]
Petrovski, Kiro [1 ]
Low, Wai Yee [2 ]
Hemmatzadeh, Farhid [1 ]
机构
[1] Univ Adelaide, Fac Sci Engn & Technol, Australian Ctr Antimicrobial Resistance Ecol, Sch Anim & Vet Sci, Adelaide, SA 5005, Australia
[2] Univ Adelaide, Davies Livestock Res Ctr, Sch Anim & Vet Sci, Adelaide, SA 5005, Australia
关键词
<italic>Mycoplasma hyopneumoniae</italic>; antimicrobial resistance; pigs; enzootic pneumonia; resistance mechanisms; MACROLIDE-RESISTANCE; ANTIBIOTIC-RESISTANCE; DECREASED SUSCEPTIBILITY; STREPTOCOCCUS-PNEUMONIAE; INHIBITORY CONCENTRATION; ACQUIRED-RESISTANCE; IN-VITRO; MUTATIONS; PROTEIN; PERSISTENCE;
D O I
10.3390/vetsci11110542
中图分类号
S85 [动物医学(兽医学)];
学科分类号
0906 ;
摘要
Antimicrobial resistance (AMR) in Mycoplasma hyopneumoniae, the causative agent of Enzootic Pneumonia in swine, poses a significant challenge to the swine industry. This review focuses on the genetic foundations of AMR in M. hyopneumoniae, highlighting the complexity of resistance mechanisms, including mutations, horizontal gene transfer, and adaptive evolutionary processes. Techniques such as Whole Genome Sequencing (WGS) and multiple-locus variable number tandem repeats analysis (MLVA) have provided insights into the genetic diversity and resistance mechanisms of M. hyopneumoniae. The study underscores the role of selective pressures from antimicrobial use in driving genomic variations that enhance resistance. Additionally, bioinformatic tools utilizing machine learning algorithms, such as CARD and PATRIC, can predict resistance traits, with PATRIC predicting 7 to 12 AMR genes and CARD predicting 0 to 3 AMR genes in 24 whole genome sequences available on NCBI. The review advocates for a multidisciplinary approach integrating genomic, phenotypic, and bioinformatics data to combat AMR effectively. It also elaborates on the need for refining genotyping methods, enhancing resistance prediction accuracy, and developing standardized antimicrobial susceptibility testing procedures specific to M. hyopneumoniae as a fastidious microorganism. By leveraging contemporary genomic technologies and bioinformatics resources, the scientific community can better manage AMR in M. hyopneumoniae, ultimately safeguarding animal health and agricultural productivity. This comprehensive understanding of AMR mechanisms will be beneficial in the adaptation of more effective treatment and management strategies for Enzootic Pneumonia in swine.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Genetic diversity of Mycoplasma hyopneumoniae in finishing pigs in Minas Gerais
    Andrade, Mariana R.
    Daniel, Amanda G. S.
    Zarate, Javier B.
    Sato, Jose P. H.
    Santos, Lucas F.
    Guedes, Roberto M. C.
    PESQUISA VETERINARIA BRASILEIRA, 2023, 43
  • [22] Mycoplasma hyopneumoniae genetic variability within swine production flows
    Betlach, Alyssa M.
    Fano, Eduardo
    Sponheim, Amanda
    Valeris-Chacin, Robert
    Dalquist, Laura
    Singer, Randall S.
    Pieters, Maria
    CANADIAN JOURNAL OF VETERINARY RESEARCH-REVUE CANADIENNE DE RECHERCHE VETERINAIRE, 2020, 84 (04): : 310 - 313
  • [23] Genetic variation of Mycoplasma hyopneumoniae from Brazilian field samples
    Viviane Sisdelli Assao
    Thalita Moreira Scatamburlo
    Elaine Nery Araujo
    Marcus Rebouças Santos
    Carlos Eduardo Real Pereira
    Roberto Maurício Carvalho Guedes
    Gustavo Costa Bressan
    Juliana Lopes Rangel Fietto
    Yung-Fu Chang
    Maria Aparecida Scatamburlo Moreira
    Abelardo Silva-Júnior
    BMC Microbiology, 19
  • [24] Characterization of in vivo acquired resistance of Mycoplasma hyopneumoniae to macrolides and lincosamides
    Stakenborg, T
    Vicca, J
    Butaye, P
    Maes, D
    Minion, FC
    Peeters, J
    De Kruif, A
    Haesebrouck, F
    MICROBIAL DRUG RESISTANCE, 2005, 11 (03) : 290 - 294
  • [25] Resistance mechanism against fluoroquinolones in mycoplasma hyopneumoniae field isolates
    Vicca, J.
    Maes, D.
    Stakenborg, T.
    Butaye, P.
    Minion, F.
    Peeters, J.
    De Kruif, A.
    Decostere, A.
    Haesebrouck, F.
    MICROBIAL DRUG RESISTANCE, 2007, 13 (03) : 166 - 170
  • [26] A physical and genetic map of the Mycoplasma hyopneumoniae strain J genome
    Blank, WA
    Stemke, GW
    CANADIAN JOURNAL OF MICROBIOLOGY, 2000, 46 (09) : 832 - 840
  • [27] The PK/PD Integration and Resistance of Tilmicosin against Mycoplasma hyopneumoniae
    Huang, Zilong
    Hu, Zixuan
    Zheng, Haorui
    Xia, Xirui
    Gu, Xiaoyan
    Shen, Xiangguang
    Yang, Hong
    Ding, Huanzhong
    PATHOGENS, 2020, 9 (06): : 1 - 12
  • [28] Determining the mechanisms of praziquantel resistance in schistosomiasis: insights and future directions
    Harrison Banda
    Aberham Abere
    Discover Medicine, 2 (1):
  • [29] Exploring the Genetic Diversity of Mycoplasma hyopneumoniae in Pigs with Pneumonia and Pleurisy at Slaughter
    Panneitz, Ana Karolina
    Braga, Eduarda Ribeiro
    Petri, Fernando Antonio Moreira
    Menegatt, Jean Carlo Olivo
    Driemeier, David
    Maes, Dominiek
    de Oliveira, Luis Guilherme
    MICROORGANISMS, 2024, 12 (10)
  • [30] Genetic structure and diversity of Mycoplasma hyopneumoniae based on a MLVA typing scheme
    Tamiozzo, Pablo
    Garcia, Virginia
    Gonzalez-Ittig, Raul E.
    Pieters, Maria
    FRONTIERS IN VETERINARY SCIENCE, 2025, 11